Multiquadric interpolation method for solving initial value problems

被引:36
作者
Hon Y.C. [1 ]
Mao X.Z. [1 ]
机构
[1] City Univ of Hong Kong, Hong Kong
关键词
Initial value problem; ordinary differential equation; multiquadric method;
D O I
10.1023/A:1025606420187
中图分类号
学科分类号
摘要
In this paper, an interpolation method for solving linear differential equations was developed using multiquadric scheme. Unlike most iterative formula, this method provides a global interpolation formula for the solution. Numerical examples show that this method offers a higher degree of accuracy than Runge-Kutta formula and the iterative multistep methods developed by Hyman (1978).
引用
收藏
页码:51 / 55
页数:4
相关论文
共 10 条
[1]  
Bogomonly A.(1985)Fundamental solutions method for elliptic boundary value problems SIAM J. Numer. Anal. 22 644-669
[2]  
Franke R.(1982)Scattered data interpolation: test of some methods Math. Comput. 38 181-200
[3]  
Golberg M. A.(1994)On a method of Atkinson for evaluating domain integrals in the boundary element method Appl. Math. Comput. 60 125-138
[4]  
Chen C. S.(1971)Multiquadric equations of topography and other irregular surfaces J. Geophys. Res. 176 1905-1915
[5]  
Hardy R. L.(1990)Multiquadrics—a scattered data approximation scheme with applications to computational fluid dynamics—I Computers Math. Appl. 19 127-145
[6]  
Kansa E. J.(1988)Multivariate interpolation and conditionally positive definite functions I J. Approx. Theory and Its Appl. 4 77-89
[7]  
Madych W. R.(1986)Interpolation of scattering data: distance matrices and conditionally positive definite functions Constr. Approx. 2 11-22
[8]  
Nelson S. A.(1992)An iterative multistep formula for solving initial value problems J. Sci. Comput. 7 81-94
[9]  
Micchelli C. A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Sanugi B. R.(undefined)undefined undefined undefined undefined-undefined