Embedding into Rectilinear Spaces

被引:22
作者
H. -J. Bandelt
V. Chepoi
M. Laurent
机构
[1] Mathematisches Seminar,
[2] Universität Hamburg,undefined
[3] Bundesstrasse 55,undefined
[4] D-20146 Hamburg,undefined
[5] Germany,undefined
[6] Laboratoire de Biomathématiques,undefined
[7] Université d'Aix Marseille II,undefined
[8] 27 Boulevard Jean Moulin,undefined
[9] F-13385 Marseille cedex 5,undefined
[10] France aria@aix.pacwan.net,undefined
[11] LIENS,undefined
[12] Ecole Normale Supérieure,undefined
[13] 45 rue d'Ulm,undefined
[14] F-75230 Paris cedex 05,undefined
[15] France monique@cwi.nl,undefined
关键词
Equidistant Point; Embedding Problem; Rectilinear Space;
D O I
10.1007/PL00009370
中图分类号
学科分类号
摘要
We show that the problem whether a given finite metric space (X,d) can be embedded into the rectilinear space Rm can be formulated in terms of m -colorability of a certain hypergraph associated with (X,d) . This is used to close a gap in the proof of an assertion of Bandelt and Chepoi [2] on certain critical metric spaces for this embedding problem. We also consider the question of determining the maximum number of equidistant points that can be placed in the m -dimensional rectilinear space and show that this number is equal to 2m for m ≤ 3 .
引用
收藏
页码:595 / 604
页数:9
相关论文
empty
未找到相关数据