An Empirical Failure Criterion for Intact Rocks

被引:73
作者
Peng, Jun [1 ]
Rong, Guan [1 ,2 ]
Cai, Ming [3 ]
Wang, Xiaojiang [1 ]
Zhou, Chuangbing [1 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources & Hydropower Engn S, Wuhan 430072, Peoples R China
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA
[3] Laurentian Univ, Bharti Sch Engn, Sudbury, ON P3E 2C6, Canada
基金
中国国家自然科学基金;
关键词
Hoek-Brown failure criterion; Triaxial compression test; Material parameter m(i); Confining pressure; Rock strength; HARD-ROCK; STRENGTH; FRACTURE; DAMAGE; GSI; LAC;
D O I
10.1007/s00603-012-0355-6
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The parameter m (i) is an important rock property parameter required for use of the Hoek-Brown failure criterion. The conventional method for determining m (i) is to fit a series of triaxial compression test data. In the absence of laboratory test data, guideline charts have been provided by Hoek to estimate the m (i) value. In the conventional Hoek-Brown failure criterion, the m (i) value is a constant for a given rock. It is observed that using a constant m (i) may not fit the triaxial compression test data well for some rocks. In this paper, a negative exponent empirical model is proposed to express m (i) as a function of confinement, and this exercise leads us to a new empirical failure criterion for intact rocks. Triaxial compression test data of various rocks are used to fit parameters of this model. It is seen that the new empirical failure criterion fits the test data better than the conventional Hoek-Brown failure criterion for intact rocks. The conventional Hoek-Brown criterion fits the test data well in the high-confinement region but fails to match data well in the low-confinement and tension regions. In particular, it overestimates the uniaxial compressive strength (UCS) and the uniaxial tensile strength of rocks. On the other hand, curves fitted by the proposed empirical failure criterion match test data very well, and the estimated UCS and tensile strength agree well with test data.
引用
收藏
页码:347 / 356
页数:10
相关论文
共 32 条
[1]   SHEAR-STRENGTH OF ROCK AND ROCK JOINTS [J].
BARTON, N .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1976, 13 (09) :255-279
[2]   Experimental characterisation of the localisation phenomenon inside a Vosges sandstone in a triaxial cell [J].
Bésuelle, P ;
Desrues, J ;
Raynaud, S .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2000, 37 (08) :1223-1237
[3]   DILATANCY IN FRACTURE OF CRYSTALLINE ROCKS [J].
BRACE, WF ;
PAULDING, BW ;
SCHOLZ, C .
JOURNAL OF GEOPHYSICAL RESEARCH, 1966, 71 (16) :3939-&
[4]   Determination of residual strength parameters of jointed rock masses using the GSI system [J].
Cai, M. ;
Kaiser, P. K. ;
Tasaka, Y. ;
Minami, M. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2007, 44 (02) :247-265
[5]   Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system [J].
Cai, M ;
Kaiser, PK ;
Uno, H ;
Tasaka, Y ;
Minami, M .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2004, 41 (01) :3-19
[6]   Practical Estimates of Tensile Strength and Hoek-Brown Strength Parameter mi of Brittle Rocks [J].
Cai, M. .
ROCK MECHANICS AND ROCK ENGINEERING, 2010, 43 (02) :167-184
[7]  
Carter B.J., 1991, GEOTECHNICAL GEOLOGI, V9, P73, DOI [10.1007/BF00880985, DOI 10.1007/BF00880985]
[8]   Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation [J].
Diederichs, MS ;
Kaiser, PK ;
Eberhardt, E .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2004, 41 (05) :785-812
[9]   Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression [J].
Eberhardt, E ;
Stead, D ;
Stimpson, B .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1999, 36 (03) :361-380
[10]  
Eberhardt E., 1998, Brittle rock fracture and progressive damage in uniaxial compression