Meanders and the Temperley-Lieb algebra

被引:56
作者
P. Di Francesco
O. Golinelli
E. Guitter
机构
[1] C.E.A. Saclay,Service de Physique Théorique
关键词
Recursion Relation; Marked Point; Final Height; Boltzmann Weight; Open Arch;
D O I
10.1007/BF02885671
中图分类号
学科分类号
摘要
The statistics of meanders is studied in connection with the Temperley-Lieb algebra. Each (multi-component) meander corresponds to a pair of reduced elements of the algebra. The assignment of a weightq per connected component of meander translates into a bilinear form on the algebra, with a Gram matrix encoding the fine structure of meander numbers. Here, we calculate the associated Gram determinant as a function ofq, and make use of the orthogonalization process to derive alternative expressions for meander numbers as sums over correlated random walks.
引用
收藏
页码:1 / 59
页数:58
相关论文
共 13 条
[1]  
Hoffman K.(1986)Sorting Jordan sequences in linear time using level-linked search trees Information and Control 68 170-184
[2]  
Mehlhorn K.(1988)The branched covering of Siberian Math. Jour. 29 717-726
[3]  
Rosenstiehl P.(1991) → Pacific. J. Math 149 319-336
[4]  
Tarjan R.(1993), hyperbolicity and projective topology Theor. Science 117 227-241
[5]  
Arnold V.(1950)A combinatorial matrix in 3-manifold theory Canad. J. Math. 2 385-398
[6]  
Ko K. H.(1968)Plane and Projective Meanders Math. of Computation 22 193-199
[7]  
Smolinsky L.(1971)Contributions à l’étude du problème des timbres poste Proc. Roy. Soc. A322 251-280
[8]  
Lando S.(undefined)A map-folding problem undefined undefined undefined-undefined
[9]  
Zvonkin A.(undefined)Relations between the percolation and coloring problem and other graph- theoretical problems associated with regular planar lattices: some exact results for the percolation problem undefined undefined undefined-undefined
[10]  
Touchard J.(undefined)undefined undefined undefined undefined-undefined