Hydrogen-storage performance of an Mg–Ni–Fe alloy prepared by reactive mechanical grinding

被引:2
作者
Myoung Youp Song
Sung Hwan Baek
Jean-Louis Bobet
Sung Nam Kwon
Seong-Hyeon Hong
机构
[1] Chonbuk National University,Division of Advanced Materials Engineering, Department of Hydrogen and Fuel Cells, Research Center of Advanced Materials Development, Engineering Research Institute
[2] Chonbuk National University,Department of Hydrogen and Fuel Cells
[3] ICMCB,undefined
[4] CNRS [UPR 9048],undefined
[5] Powder Materials Research Center,undefined
[6] KIMS,undefined
[7] Korea Institute of Machinery & Materials,undefined
来源
Journal of Materials Science | 2009年 / 44卷
关键词
Fe2O3; Mechanical Alloy; MgH2; Shorten Diffusion Distance; Magnesium Hydride;
D O I
暂无
中图分类号
学科分类号
摘要
The 71.5%Mg–23.5%Ni–5%Fe alloy prepared by reactive mechanical grinding for 4 h does not need activation. The activated sample has the hydriding rate of 0.494 wt%/min for 5 min and absorbs 3.32 wt% for 60 min at 593 K under 1.2 MPa H2. It has the dehydriding rate of 0.330 wt%/min for 5 min and desorbs 2.42 wt%H for 20 min at 593 K 0.1 MPa H2. The XRD pattern of 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after reactive mechanical grinding exhibits MgH2 in addition to starting elements Mg, Ni, and Fe. 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe after hydriding–dehydriding cycling contains Mg, Mg2Ni, MgO, and Fe. The reactive mechanical grinding of Mg with Ni and Fe is considered to facilitate nucleation by creating many defects on the surface and in the interior of Mg, by the additive acting as active sites for the nucleation and shorten diffusion distances of hydrogen atoms by reducing the particle size of Mg. The MgH2 formed in the as-milled 71.5 wt%Mg–23.5 wt%Ni–5 wt%Fe alloy is considered to lead to the creation of more defects and finer particle size.
引用
收藏
页码:4827 / 4833
页数:6
相关论文
共 118 条
  • [1] Reilly JJ(1967)undefined Inorg Chem 6 2220-undefined
  • [2] Wiswall RH(1968)undefined Inorg Chem 7 2254-undefined
  • [3] Reilly JJ(1978)undefined J Inorg Nucl Chem 40 765-undefined
  • [4] Wiswall RH(1979)undefined Mater Res Bull 14 377-undefined
  • [5] Mintz MH(1980)undefined J Less-Common Met 74 427-undefined
  • [6] Gavra Z(1982)undefined Int J Hydrogen Energy 7 787-undefined
  • [7] Hadari Z(1976)undefined Mater Res Bull 11 1441-undefined
  • [8] Pezat M(1980)undefined J Less-Common Met 74 323-undefined
  • [9] Hbika A(2003)undefined J Alloys Compd 356–357 603-undefined
  • [10] Darriet B(2003)undefined Acta Mater 51 6407-undefined