On the Generation of Time-Evolving Regional Data*

被引:1
作者
Theodoros Tzouramanis
Michael Vassilakopoulos
Yannis Manolopoulos
机构
[1] Aristotle University,Laboratory of Data Engineering, Department of Informatics
[2] University of Cyprus,Department of Computer Science
来源
GeoInformatica | 2002年 / 6卷
关键词
spatio-temporal databases; benchmarking; synthetic data generators; regional data; access methods;
D O I
暂无
中图分类号
学科分类号
摘要
Benchmarking of spatio-temporal databases is an issue of growing importance. In case large real data sets are not available, benchmarking requires the generation of artificial data sets following the real-world behavior of spatial objects that change their locations, shapes and sizes over time. Only a few innovative papers have recently addressed the topic of spatio-temporal data generators. However, all existing approaches do not consider several important aspects of continuously changing regional data. In this report, a new generator, called generator of time-evolving regional data (G-TERD), for this class of data is presented. The basic concepts that determine the function of G-TERD are the structure of complex 2-D regional objects, their color, maximum speed, zoom and rotation-angle per time slot, the influence of other moving or static objects on the speed and on the moving direction of an object, the position and movement of the scene-observer, the statistical distribution of each changing factor and finally, time. Apart from these concepts, the operation and basic algorithmic issues of G-TERD are presented. In the framework developed, the user can control the generator response by setting several parameters values. To demonstrate the use of G-TERD, the generation of a number of sample data sets is presented and commented. The source code and a visualization tool for using and testing the new generator are available on the Web.1 Thus, it is easy for the user to manipulate the generator according to specific application requirements and at the same time to examine the reliability of the underlying generalized data model.
引用
收藏
页码:207 / 231
页数:24
相关论文
共 21 条
  • [1] Abraham T.(1999)Survey of spatio-temporal databases Geoinformatica 3 61-99
  • [2] Roddick J.F.(1994)Bibliography on spatiotemporal databases International Journal of Geographical Information Science 8 95-103
  • [3] Al-Taha K.K.(2002)A Framework for generating network-based moving objects Geoinformatica 6 153-180
  • [4] Snodgrass R.T.(1999)Benchmarking spatial joins a la carte International Journal of Geographical Information Science 13 639-655
  • [5] Soo M.D.(2001)Oporto: a realistic scenario generator for moving objects Geoinformatica 5 71-93
  • [6] Brinkhoff T.(2000)Generating spatiotemporal datasets on the WWW ACM SIGMOD Record 29 39-43
  • [7] Guenther O.(2000)Overlapping linear quadtrees and spatiotemporal query processing The Computer Journal 43 325-343
  • [8] Picouet P.(1996)Guidelines for presentation and comparison of indexing techniques ACM SIGMOD Record 25 10-15
  • [9] Saglio J.-M.(undefined)undefined undefined undefined undefined-undefined
  • [10] Scholl M.(undefined)undefined undefined undefined undefined-undefined