Lysenin: A new tool for investigating membrane lipid organization

被引:29
作者
Ishitsuka R. [1 ]
Kobayashi T. [1 ,2 ,3 ]
机构
[1] Lipid Biology Laboratory, RIKEN Discovery Research Institute, Saitama
[2] Supra-Biomolecular System Res. Group, RIKEN Frontier Research System, Wako-shi, Saitama 351-0198
[3] INSERM U585, Institut Natl. des Sci. Appl.-Lyon, Villeurbanne
关键词
Lipid rafts; Lysenin; Membrane domain; Pore-forming toxin; Sphingomyelin;
D O I
10.1111/j.1447-073x.2004.00086.x
中图分类号
学科分类号
摘要
Sphingomyelin is a major sphingolipid species in animal cells and is a major lipid constituent of plasma membranes. Recent reports have established important roles for sphingomyelin and its metabolites as second messengers in signal transduction events during development and differentiation. Sphingomyelin is also a major component of sphingolipid, cholesterol-rich plasma membrane microdomains, known as 'lipid rafts'. However, little is known about the organization of sphingomyelin in biological membranes. Lysenin is a recently discovered sphingomyelin-specific toxin. In the present review, we summarize the current characterization of this protein and describe our recent attemp to elucidate the organization of sphingomyelin in cellular membranes using lysenin as a unique tool.
引用
收藏
页码:184 / 190
页数:6
相关论文
共 40 条
[1]  
Barenholz Y., Thompson T.E., Sphingomyelin: Biophysical aspects, Chem. Phys. Lipids, 102, pp. 29-34, (1999)
[2]  
Bernheimer A.W., Avigad L.S., Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin, Proc. Natl. Acad. Sci. USA, 73, pp. 467-471, (1976)
[3]  
Brown D.A., London E., Functions of lipid rafts in biological membranes, Annu. Rev. Cell Dev. Biol., 14, pp. 111-136, (1998)
[4]  
Brown R.E., Sphingolipid organization in biomembranes: What physical studies of model membranes reveal, J. Cell Sci., 111, pp. 1-9, (1998)
[5]  
Cooper E.L., Kauschke E., Cossarizza A., Digging for innate immunity since Darwin and Metchnikoff, Bioessays, 24, pp. 319-333, (2002)
[6]  
Feigenson G.W., Buboltz J.T., Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: Nanoscopic domain formation driven by cholesterol, Biophys. J., 80, pp. 2775-2788, (2001)
[7]  
Fukasawa M., Nishijima M., Hanada K., Genetic evidence for ATP-dependent endoplasmic reticulum-to-Golgi apparatus trafficking of ceramide for sphingomyelin synthesis in Chinese hamster ovary cells, J. Cell Biol., 144, pp. 673-685, (1999)
[8]  
Gatt S., Studies of sphingomyelin and sphingomyelinases, Chem. Phys. Lipids, 102, pp. 45-53, (1999)
[9]  
Hanada K., Hara T., Fukasawa M., Yamaji A., Umeda M., Nishijima M., Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin: Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase, J. Biol. Chem., 273, 33, pp. 787-794, (1998)
[10]  
Hanada K., Kumagai K., Yasuda S., Et al., Molecular machinery for non-vesicular trafficking of ceramide, Nature, 426, pp. 803-809, (2003)