Inverse design of nanoporous crystalline reticular materials with deep generative models

被引:255
作者
Yao, Zhenpeng [1 ,2 ]
Sanchez-Lengeling, Benjamin [1 ]
Bobbitt, N. Scott [3 ]
Bucior, Benjamin J. [3 ]
Kumar, Sai Govind Hari [2 ]
Collins, Sean P. [4 ]
Burns, Thomas [4 ]
Woo, Tom K. [4 ]
Farha, Omar K. [3 ,5 ]
Snurr, Randall Q. [3 ]
Aspuru-Guzik, Alan [1 ,2 ,6 ,7 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Toronto, Dept Chem, Toronto, ON, Canada
[3] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
[4] Univ Ottawa, Dept Chem & Biomol Sci, Ottawa, ON, Canada
[5] Northwestern Univ, Dept Chem, Evanston, IL USA
[6] Vector Inst Artificial Intelligence, Toronto, ON, Canada
[7] Canadian Inst Adv Res CIFAR, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; CO2; SEPARATION; THERMODYNAMICS; CONSTRUCTION; GEOMETRY; METHANE; CO2/CH4; STORAGE;
D O I
10.1038/s42256-020-00271-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reticular frameworks are crystalline porous materials that form via the self-assembly of molecular building blocks in different topologies, with many having desirable properties for gas storage, separation, catalysis, biomedical applications and so on. The notable variety of building blocks makes reticular chemistry both promising and challenging for prospective materials design. Here we propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder for the generative design of reticular materials. We demonstrate the automated design process with a class of metal-organic framework (MOF) structures and the goal of separating carbon dioxide from natural gas or flue gas. Our model shows high fidelity in capturing MOF structural features. We show that the autoencoder has a promising optimization capability when jointly trained with multiple top adsorbent candidates identified for superior gas separation. MOFs discovered here are strongly competitive against some of the best-performing MOFs/zeolites ever reported.
引用
收藏
页码:76 / 86
页数:11
相关论文
共 75 条
[1]   Increasing topological diversity during computational "synthesis" of porous crystals: how and why [J].
Anderson, Ryther ;
Gomez-Gualdron, Diego A. .
CRYSTENGCOMM, 2019, 21 (10) :1653-1665
[2]   Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores [J].
Bae, Youn-Sang ;
Yazaydin, A. Oezguer ;
Snurr, Randall Q. .
LANGMUIR, 2010, 26 (08) :5475-5483
[3]  
Biovia D.S., 2019, Materials Studio
[4]   Data-driven design of metal-organic frameworks for wet flue gas CO2 capture [J].
Boyd, Peter G. ;
Chidambaram, Arunraj ;
Garcia-Diez, Enrique ;
Ireland, Christopher P. ;
Daff, Thomas D. ;
Bounds, Richard ;
Gladysiak, Andrzej ;
Schouwink, Pascal ;
Moosavi, Seyed Mohamad ;
Maroto-Valer, M. Mercedes ;
Reimer, Jeffrey A. ;
Navarro, Jorge A. R. ;
Woo, Tom K. ;
Garcia, Susana ;
Stylianou, Kyriakos C. ;
Smit, Berend .
NATURE, 2019, 576 (7786) :253-+
[5]   Identification Schemes for Metal-Organic Frameworks To Enable Rapid Search and Cheminformatics Analysis [J].
Bucior, Benjamin J. ;
Rosen, Andrew S. ;
Haranczyk, Maciej ;
Yao, Zhenpeng ;
Ziebel, Michael E. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Siepmann, J. Ilja ;
Aspuru-Guzik, Alan ;
Snurr, Randall Q. .
CRYSTAL GROWTH & DESIGN, 2019, 19 (11) :6682-6697
[6]   Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional [J].
Campana, Carlos ;
Mussard, Bastien ;
Woo, Tom K. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (10) :2866-2878
[7]   Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures [J].
Cavenati, S ;
Grande, CA ;
Rodrigues, AE .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (04) :1095-1101
[8]   Synergistic sorbent separation for one-step ethylene purification from a four-component mixture [J].
Chen, Kai-Jie ;
Madden, David G. ;
Mukherjee, Soumya ;
Pham, Tony ;
Forrest, Katherine A. ;
Kumar, Amrit ;
Space, Brian ;
Kong, Jie ;
Zhang, Qiu-Yu ;
Zaworotko, Michael J. .
SCIENCE, 2019, 366 (6462) :241-+
[9]  
Chung J., 2014, ARXIV, DOI DOI 10.48550/ARXIV.1412.3555
[10]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998