A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers

被引:171
作者
Hennessy B.T. [1 ,2 ]
Lu Y. [1 ,3 ]
Gonzalez-Angulo A.M. [1 ,2 ,3 ,4 ]
Carey M.S. [1 ,3 ]
Myhre S. [5 ,6 ]
Ju Z. [1 ,7 ]
Davies M.A. [1 ,8 ]
Liu W. [1 ,7 ]
Coombes K. [1 ,7 ]
Meric-Bernstam F. [1 ,9 ]
Bedrosian I. [1 ,9 ]
McGahren M. [1 ,3 ]
Agarwal R. [1 ,3 ]
Zhang F. [1 ,3 ]
Overgaard J. [10 ]
Alsner J. [10 ]
Neve R.M. [11 ]
Kuo W.-L. [11 ]
Gray J.W. [11 ]
Borresen-Dale A.-L. [5 ,6 ]
Mills G.B. [1 ,2 ,3 ]
机构
[1] University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[2] Kleberg Center for Molecular Markers, University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[3] Department of Systems Biology, University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[4] Department of Breast Medical Oncology, University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[5] Department of Genetics, Institute for Cancer Research, Rikshospitalet University Hospital, Oslo
[6] Norwegian Radium Hospital, Faculty of Medicine, University of Oslo, Oslo
[7] Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[8] Department of Melanoma Medical Oncology, University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[9] Department of Surgical Oncology, University of Texas M. D. Anderson Cancer Center (MDACC), Houston, TX 77030
[10] Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus
[11] Lawrence Berkeley National Laboratory, Berkeley, CA
关键词
Breast cancer; Functional proteome; Kinase signaling; RPPA; Steroid signaling;
D O I
10.1007/s12014-010-9055-y
中图分类号
学科分类号
摘要
Introduction: The lack of large panels of validated antibodies, tissue handling variability, and intratumoral heterogeneity potentially hamper comprehensive study of the functional proteome in non-microdissected solid tumors. The purpose of this study was to address these concerns and to demonstrate clinical utility for the functional analysis of proteins in non-microdissected breast tumors using reverse phase protein arrays (RPPA). Methods: Herein, 82 antibodies that recognize kinase and steroid signaling proteins and effectors were validated for RPPA. Intraslide and interslide coefficients of variability were <15%. Multiple sites in non-microdissected breast tumors were analyzed using RPPA after intervals of up to 24 h on the benchtop at room temperature following surgical resection. Results: Twenty-one of 82 total and phosphoproteins demonstrated time-dependent instability at room temperature with most variability occurring at later time points between 6 and 24 h. However, the 82-protein functional proteomic "fingerprint" was robust in most tumors even when maintained at room temperature for 24 h before freezing. In repeat samples from each tumor, intratumoral protein levels were markedly less variable than intertumoral levels. Indeed, an independent analysis of prognostic biomarkers in tissue from multiple tumor sites accurately and reproducibly predicted patient outcomes. Significant correlations were observed between RPPA and immunohistochemistry. However, RPPA demonstrated a superior dynamic range. Classification of 128 breast cancers using RPPA identified six subgroups with markedly different patient outcomes that demonstrated a significant correlation with breast cancer subtypes identified by transcriptional profiling. Conclusion: Thus, the robustness of RPPA and stability of the functional proteomic "fingerprint" facilitate the study of the functional proteome in non-microdissected breast tumors. © 2010 Springer Science+Business Media, LLC.
引用
收藏
页码:129 / 151
页数:22
相关论文
共 49 条
[1]  
Sorlie T., Perou C.M., Tibshirani R., Aas T., Geisler S., Johnsen H., Hastie T., Eisen M.B., Van De Rijn M., Jeffrey S.S., Thorsen T., Quist H., Matese J.C., Brown P.O., Botstein D., Lonning P.E., Borresen-Dale A.-L., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proceedings of the National Academy of Sciences of the United States of America, 98, 19, pp. 10869-10874, (2001)
[2]  
Van De Vijver M.J., He Y.D., Van 'T Veer L.J., Dai H., Hart A.A.M., Voskuil D.W., Schreiber G.J., Peterse J.L., Roberts C., Marton M.J., Parrish M., Atsma D., Witteveen A., Glas A., Delahaye L., Van Der Velde T., Bartelink H., Rodenhuis S., Rutgers E.T., Friend S.H., Bernards R., A gene-expression signature as a predictor of survival in breast cancer, New England Journal of Medicine, 347, 25, pp. 1999-2009, (2002)
[3]  
Ayers M., Symmans W.F., Stec J., Damokosh A.I., Clark E., Hess K., Lecocke M., Metivier J., Booser D., Ibrahim N., Valero V., Royce M., Arun B., Whitman G., Ross J., Sneige N., Hortobagyi G.N., Pusztai L., Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer, Journal of Clinical Oncology, 22, 12, pp. 2284-2293, (2004)
[4]  
Sjoblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K.V., Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W., Velculescu V.E., The consensus coding sequences of human breast and colorectal cancers, Science, 314, 5797, pp. 268-274, (2006)
[5]  
Rosenwald A., Wright G., Chan W.C., Connors J.M., Campo E., Fisher R.I., Gascoyne R.D., Konrad Muller-Hermelink H., Smeland E.B., Giltnane J.M., Hurt E.M., Zhao H., Averett L., Yang L., Wilson W.H., Jaffe E.S., Simon R., Klausner R.D., Powell J., Duffey P.L., Longo D.L., Greiner T.C., Weisenburger D.D., Sanger W.G., Dave B.J., Lynch J.C., Vose J., Armitage J.O., Montserrat E., Lopez-Guillermo A., Grogan T.M., Miller T.P., Leblanc M., Ott G., Kvaloy S., Delabie J., Holte H., Krajci P., Stokke T.
[6]  
Bullinger L., Dohner K., Bair E., Frohling S., Schlenk R.F., Tibshirani R., Dohner H., Pollack J.R., Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia, New England Journal of Medicine, 350, 16, pp. 1605-1616, (2004)
[7]  
Jazaeri A.A., Yee C.J., Sotiriou C., Brantley K.R., Boyd J., Liu E.T., Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers, J Natl Cancer Inst, 94, pp. 990-1000, (2002)
[8]  
Pedersen N., Mortensen S., Sorensen S.B., Et al., Transcriptional gene expression profiling of small cell lung cancer cells, Cancer Res, 63, pp. 1943-1953, (2003)
[9]  
Yu Y.P., Landsittel D., Jing L., Nelson J., Ren B., Liu L., McDonald C., Thomas R., Dhir R., Finkelstein S., Michalopoulos G., Becich M., Luo J.-H., Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy, Journal of Clinical Oncology, 22, 14, pp. 2790-2799, (2004)
[10]  
Sirotnak F.M., She Y., Khokhar N.Z., Hayes P., Gerald W., Scher H.I., Microarray analysis of prostate cancer progression to reduced androgen dependence: Studies in unique models contrasts early and late molecular events, Molecular Carcinogenesis, 41, 3, pp. 150-163, (2004)