Random attractors

被引:711
作者
Crauel H. [1 ]
Debussche A. [2 ]
Flandoli F. [3 ]
机构
[1] 66121 Saarbrücken
[2] Laboratoire d'Analyse Numérique et CNRS, Université Paris-Sud, Batiment 425
[3] Dipartimento di Matematica Applicata U. Dini, 56126 Pisa
关键词
Deterministic nonautonomous systems; Random attractors; Stochastic Burgers equation; Stochastic dynamical systems; Stochastic Navier-Stokes equation; Stochastic nonlinear wave equation;
D O I
10.1007/BF02219225
中图分类号
学科分类号
摘要
In this paper, we generalize the notion of an attractor for the stochastic dynamical system introduced in [7]. We prove that the stochastic attractor satisfies most of the properties satisfied by the usual attractor in the theory of deterministic dynamical systems. We also show that our results apply to the stochastic Navier-Stokes equation, the white noise-driven Burgers equation, and a nonlinear stochastic wave equation. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:307 / 341
页数:34
相关论文
共 24 条
[1]  
Bensoussan A., Temam R., Equations stochastiques du type Navier-Stokes, J. Funct. Anal., 13, pp. 195-222, (1973)
[2]  
Brzezniak Z., Capinski M., Flandoli F., Pathwise global attractors for stationary random dynamical systems, Prob. Th. Rel. Fields, 95, pp. 87-102, (1993)
[3]  
Carmona R., Nualart D., Random non-linear wave equations: Smoothness of the solutions, Prob. Th. Rel. Fields, 79, pp. 469-508, (1988)
[4]  
Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, 580, (1977)
[5]  
Chambers D.H., Adrian R.J., Moin P., Stewart D.S., Sung H.J., Karhunen-Loeve expansion of Burger's model of turbulence, Phys. Fluids, 31, 9, pp. 2573-2582, (1988)
[6]  
Choi H., Temam R., Moin P., Kim J., Feedback control for unsteady flow and its application to Burgers equation, J. Fluid Mech., 253, pp. 509-543, (1993)
[7]  
Crauel H., Flandoli F., Attractors for random dynamical systems, Prob. Th. Rel. Fields, 100, pp. 365-393, (1994)
[8]  
Crauel H., Flandoli F., Hausdorff dimension of invariant sets for random dynamical systems, J. Dynamics Differential Equations, (1994)
[9]  
Da Prato G., Gatarek D., Stochastic Burgers Equation with Correlated Noise, (1994)
[10]  
Da Prato G., Zabczyk J., Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and Its Applications, (1992)