Large-Scale Classification of Land Cover Using Retrospective Satellite Data

被引:26
作者
Lavreniuk M.S. [1 ]
Skakun S.V. [2 ]
Shelestov A.J. [3 ]
Yailymov B.Y. [1 ]
Yanchevskii S.L. [4 ]
Yaschuk D.J. [1 ]
Kosteckiy A.Ì. [1 ]
机构
[1] Institute of Space Research, National Academy of Sciences of Ukraine and State Space Agency of Ukraine, Kyiv
[2] “Integration Plus” Ltd., Kyiv
[3] National University of Life and Environmental Sciences of Ukraine, Kyiv
[4] National Center of Control and Testing of Spacecraft, Space Agency of Ukraine, Kyiv
关键词
data fusion; geospatial data; land cover classification; neural network; satellite data; training and test samples;
D O I
10.1007/s10559-016-9807-4
中图分类号
学科分类号
摘要
Large-scale mapping of land cover is considered in the paper as a problem of automated processing of big geospatial data, which may contain various uncertainties. To solve it, we propose to use three different paradigms, namely, decomposition method, the method of active learning from the scope of intelligent computations, and method of satellite images reconstruction. Such an approach allows us to minimize the participation of experts in solving the problem. Within solving the problem of land cover classification we also investigated three different approaches of data fusion. The most efficient data fusion method is one that could be reduced to the problem of classification on the base of time-series images. Developed automated methodology was applied to land cover mapping and classification for the whole territory of Ukraine for 1990, 2000, and 2010 with a 30-meter spatial resolution. © 2016, Springer Science+Business Media New York.
引用
收藏
页码:127 / 138
页数:11
相关论文
共 24 条
[1]  
Friedl M.A., McIver D.K., Hodges J.C.F., Zhang X.Y., Muchoney D., Strahler A.H., Woodcock C.E., Gopal S., Schneider A., Cooper A., Baccini A., Gao F., Schaaf C., Global land cover mapping from MODIS: Algorithms and early results, Remote Sensing of Environment, 83, 2, pp. 287-302, (2002)
[2]  
Gallego J., Kussul N., Skakun S., Kravchenko O., Shelestov A., Kussul O., Efficiency assessment of using satellite data for crop area estimation in Ukraine,, Intern. J. Applied Earth Observation and Geoinformation, 29, pp. 22-30, (2014)
[3]  
Kussul N., Skakun S., Shelestov A., Kravchenko O., Gallego J.F., Kussul O., Crop area estimation in Ukraine using satellite data within the MARS project 2012,, IEEE Intern. Geoscience and Remote Sensing Symposium (IGARSS), pp. 3756-3759, (2012)
[4]  
Cormen T.H., Leiserson C.E., Rivest R.L., Stein C., Introduction to Algorithms, (2009)
[5]  
Tuia D., Ratle F., Pacifici F., Kanevski M.F., Emery W.J., Active learning methods for remote sensing image classification, IEEE Trans. on Geoscience and Remote Sensing, 47, 7, pp. 2218-2232, (2009)
[6]  
Shelestov A.Y., Kravchenko A.N., Skakun S.V., Voloshin S.V., Kussul N.N., Geospatial information system for agricultural monitoring, Cybern. Syst. Analysis, 49, 1, pp. 124-132, (2013)
[7]  
Kussul N., Skakun S., Shelestov A., Kussul O., Yailymov B., Resilience aspects in the sensor Web infrastructure for natural disaster monitoring and risk assessment based on Earth observation data, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 7, 9, pp. 3826-3832, (2014)
[8]  
Kussul N., Mandl D., Moe K., Mund J.P., Post J., Shelestov A., Skakun S., Szarzynski J., Van Langenhove G., Handy M., Interoperable infrastructure for flood monitoring: Sensor Web, Grid, and cloud, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 5, 6, pp. 1740-1745, (2012)
[9]  
Kussul N., Shelestov A., Skakun S., Grid and sensor Web technologies for environmental monitoring, Earth Science Informatics, 2, 1-2, pp. 37-51, (2009)
[10]  
Kussul, A. Shelestov, and S. Skakun, “Flood monitoring from SAR data,” NATO Science for Peace and Security Series C: Environmental Security, 19–29, 10.1007/978-90-481-9618-0_3, (2011)