Network analysis tools: From biological networks to clusters and pathways

被引:72
作者
Brohée S. [1 ]
Faust K. [1 ]
Lima-Mendez G. [1 ]
Vanderstocken G. [1 ]
van Helden J. [1 ]
机构
[1] Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe), Université Libre de Bruxelles, B-1050 Bruxelles, Boulevard du Triomphe
关键词
D O I
10.1038/nprot.2008.100
中图分类号
学科分类号
摘要
Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in ∼1 h.
引用
收藏
页码:1616 / 1629
页数:13
相关论文
共 38 条
[1]  
Thomas-Chollier M., Et al., RSAT: Regulatory sequence analysis tools, Nucleic Acids Res, 36, (2008)
[2]  
Brohee S., Et al., NeAT: A toolbox for the analysis of biological networks, clusters, classes and pathways, Nucleic Acids Res, 36, (2008)
[3]  
Turatsinze J.-V., Thomas-Chollier M., Defrance M., van Helden J., Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules, Nat. Protoc, (2008)
[4]  
Defrance M., Janky R., Sand O., van Helden J., Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences, Nat. Protoc, (2008)
[5]  
Sand O., Thomas-Chollier M., Vervisch E., van Helden J., Analyzing multiple data sets by interconnecting RSAT programs via SOAP Web services-an example with ChIP-chip data, Nat. Protoc, (2008)
[6]  
Jeong H., Tombor B., Albert R., Oltvai Z.N., Barabasi A.L., The large-scale organization of metabolic networks, Nature, 407, pp. 651-654, (2000)
[7]  
Jeong H., Mason S.P., Barabasi A.L., Oltvai Z.N., Lethality and centrality in protein networks, Nature, 411, pp. 41-42, (2001)
[8]  
Fell D.A., Wagner A., The small world of metabolism, Nat. Biotechnol, 18, pp. 1121-1122, (2000)
[9]  
Blatt M., Wiseman S., Domany E., Superparamagnetic clustering of data, Phys. Rev. Lett, 76, pp. 3251-3254, (1996)
[10]  
Bader G.D., Hogue C.W.V., An automated method for finding molecular complexes in large protein interaction networks, BMC Bioinformatics, 4, (2003)