On dynamic measures of risk

被引:18
作者
Jakša Cvitanić
Ioannis Karatzas
机构
[1] Department of Statistics,
[2] Columbia University,undefined
[3] New York,undefined
[4] NY 10027,undefined
[5] USA ,undefined
[6] Departments of Mathematics and Statistics,undefined
[7] Columbia University,undefined
[8] New York,undefined
[9] NY 10027,undefined
[10] USA (e-mail: cj@stat.columbia.edu; ik@math.columbia.edu) ,undefined
关键词
Key words:Dynamic measures of risk, Bayesian risk, hedging, capital requirements, value-at-risk; JEL classification: G11, G13, C73; Mathematics Subject Classification (1991):90A09, 90A46, 93E20, 60H30;
D O I
10.1007/s007800050071
中图分类号
学科分类号
摘要
In the context of complete financial markets, we study dynamic measures of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} \[ \rho(x;C):=\sup_{\nu\in\D} \inf_{\pi(\cdot)\in\A(x)}{\bf E}_\nu\left(\frac{C-X^{x, \pi}(T)}{S_0(T)}\right)^+, \] \end{document} for the risk associated with hedging a given liability C at time t = T. Here x is the initial capital available at time t = 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal A}(x)$\end{document} the class of admissible portfolio strategies, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $S_0(\cdot)$\end{document} the price of the risk-free instrument in the market, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal P}=\{{\bf P}_\nu\}_{\nu\in{\cal D}}$\end{document} a suitable family of probability measures, and [0,T] the temporal horizon during which all economic activity takes place. The classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal A}(x)$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal D}$\end{document} are general enough to incorporate capital requirements, and uncertainty about the actual values of stock-appreciation rates, respectively. For this latter purpose we discuss, in addition to the above “max-min” approach, a related measure of risk in a “Bayesian” framework. Risk-measures of this type were introduced by Artzner, Delbaen, Eber and Heath in a static setting, and were shown to possess certain desirable “coherence” properties.
引用
收藏
页码:451 / 482
页数:31
相关论文
empty
未找到相关数据