The tetrahedral 4-body problem

被引:8
作者
Delgado J. [1 ]
Vidal C. [2 ]
机构
[1] Departamento de Matemáticas, Universidad Autónoma Metropolitan-Izlapalapa, México, D.F. 09340
[2] Departamento de Matemática, Universidade Federal de Pernambuco, Cidade Universitaria, Recife, PE 50740-540, Avenida Prof. Luiz Freire, s/n
关键词
4-Body problem; Parabolic orbits; Symbolic dynamics; Total collision;
D O I
10.1023/A:1022667613764
中图分类号
学科分类号
摘要
Consider 4 bodies of equal unit masses in space at the vertices of a regular tetrahedron with variable height, interacting under gravitational forces. A topological and dynamical description of the total collision manifold, parabolic orbits of escape, and homoclinic and heteroclinic orbits asymptotic to total collision and infinity are given. This permits us to give a symbolic dynamics representation of motions. © 1999 Plenum Publishing Corporation.
引用
收藏
页码:735 / 780
页数:45
相关论文
共 12 条
[1]  
Devaney R., Singularities in classical mechanical systems, Ergodic Theory and Dynamical Systems, 1, pp. 211-333, (1981)
[2]  
Llibre J., Martinez R., Simo C., Tranversality of the invariant manifolds associated to the Lyapunov family of periodic orbits near L<sup>2</sup> in the restricted three-body problem, J. Diff. Eq., 58, 1, pp. 104-156, (1985)
[3]  
Llibre J., Simo C., Characterization of tranversal homothetic solutions in the n-body problem, Arch. Rat. Mech. Anal., 77, 2, pp. 189-198, (1995)
[4]  
Martinez R., Simo C., Qualitative study of the planar isosceles, Celest. Mech., 41, pp. 179-251, (1988)
[5]  
McGehee R., A stable manifold theorem for degenerate fixed points with applications to celestial mechanics, J. Diff. Eq., 14, pp. 70-88, (1973)
[6]  
Moeckel R., Orbits of the three-body problem which pass infinitely close to triple collision, Am. J. Math., 103, 6, pp. 1323-1341, (1981)
[7]  
Moeckel R., Spiralling invariant manifolds, J. Diff. Eq., 66, 2, pp. 189-207, (1987)
[8]  
Moser J., Stable and random motions in dynamical systems, Ann. Math. Stud., (1973)
[9]  
Simo C., Necessary and sufficient conditions for the geometric regularization of singularities, Proc. IV Congr. Ec. Dif. Apli., Sevilla, Espańa, pp. 193-202, (1981)
[10]  
Susin A., Simo C., Moduli of conjugacy in the triple collision collinear problem, International Conference on Differential Equations, 1-2, pp. 921-926, (1993)