Reconstruction of Sparse Vectors in White Gaussian Noise

被引:6
作者
G. K. Golubev
机构
关键词
Model Selection; System Theory; Selection Method; Gaussian Noise; Statistical Estimation;
D O I
10.1023/A:1020098307781
中图分类号
学科分类号
摘要
We consider the problem of reconstruction of a sparse vector observed against a background of white Gaussian noise. The sparsity is assumed to be unknown. Two approaches to statistical estimation in this case are discussed, namely, the model selection method and threshold estimators. We propose a method of selecting a threshold estimator based on the principle of empirical complexity minimization with minimal conservative penalization.
引用
收藏
页码:65 / 79
页数:14
相关论文
共 12 条
[1]  
Donoho D.L.(1994)Ideal Spatial Adaptation via Wavelet Shrinkage Biometrika 81 425-455
[2]  
Johnstone I.M.(1994)The Statistics of Natural Images Network: Computation in Neural Systems 5 517-548
[3]  
Ruderman D.L.(1994)Ordered Linear Smoothers Ann. Statist. 22 835-866
[4]  
Kneip A.(1999)Risk Bounds for Model Selection via Penalization Probab. Theory Related Fields 113 301-413
[5]  
Barron A.(1973)Some Comments on Technometrics 15 661-675
[6]  
Birgé L.(1992)Adaptive Spline Estimates in a Nonparametric Regression Model Teor. Veroyatn. Primen. 37 554-561
[7]  
Massart P.(1992)Nonparametric Estimation of Smooth Probability Densities in Probl. Peredachi Inf. 28 52-62
[8]  
Mallows C.V.(1993)Nonparametric Estimation of Smooth Spectral Densities of Gaussian Stationary Sequences Teor. Veroyatn. Primen. 38 775-786
[9]  
Golubev G.K.(undefined)undefined undefined undefined undefined-undefined
[10]  
Nussbaum M.(undefined)undefined undefined undefined undefined-undefined