Improving Markov Chain Monte Carlo Model Search for Data Mining

被引:8
作者
Paolo Giudici
Robert Castelo
机构
[1] University of Pavia,Department of Economics and Quantitative Methods
[2] University of Utrecht,Institute of Information and Computing Sciences
来源
Machine Learning | 2003年 / 50卷
关键词
Bayesian structural learning; convergence diagnostics; Dirichlet distribution; market basket analysis; Markov chain Monte Carlo;
D O I
暂无
中图分类号
学科分类号
摘要
The motivation of this paper is the application of MCMC model scoring procedures to data mining problems, involving a large number of competing models and other relevant model choice aspects.
引用
收藏
页码:127 / 158
页数:31
相关论文
共 32 条
  • [1] Brooks S.(1998)Markov chain Monte Carlo method and its application The Statistician 47 69-100
  • [2] Dawid A.(1979)Conditional independence in statistical theory (with discussion) Journal of the Royal Statistical Society B 41 1-31
  • [3] Dawid A.(1993)Hyper-Markov laws in the statistical analysis of decomposable graphical models Annals of Statistics 21 1272-1317
  • [4] Lauritzen S.(1999)Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models Biometrika 86 615-633
  • [5] Dellaportas P.(1985)A fast procedure for model search in multidimensional contingency tables Biometrika 72 339-351
  • [6] Forster J.(1989)Decomposition of maximum likelihood in mixed interaction models Biometrika 76 539-555
  • [7] Edwards D.(1999)Decomposable graphical gaussian model determination Biometrika 86 785-801
  • [8] Havránek T.(1995)Learning Bayesian networks: The combination of knowledge and statistical data Machine Learning 20 194-243
  • [9] Frydenberg M.(1995)Bayes factors Journal of the American Statistical Association 90 773-795
  • [10] Lauritzen S.(1990)Independence properties of directed Markov fields Networks 20 491-505