Modelling the scaling properties of human mobility

被引:939
作者
Song, Chaoming [1 ,2 ]
Koren, Tal [1 ,2 ]
Wang, Pu [1 ,2 ]
Barabasi, Albert-Laszlo [1 ,2 ,3 ]
机构
[1] Northeastern Univ, Dept Phys Biol & Comp Sci, Ctr Complex Network Res, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Ctr Canc Syst Biol, Boston, MA 02115 USA
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Med, Boston, MA 02115 USA
关键词
RANDOM SEARCHES; LEVY FLIGHTS; RANDOM-WALKS; PATTERNS; DIFFUSION; NETWORKS; PREDICTABILITY; EPIDEMICS; OUTBREAKS; DYNAMICS;
D O I
10.1038/NPHYS1760
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Individual human trajectories are characterized by fat-tailed distributions of jump sizes and waiting times, suggesting the relevance of continuous-time random-walk (CTRW) models for human mobility. However, human traces are barely random. Given the importance of human mobility, from epidemic modelling to traffic prediction and urban planning, we need quantitative models that can account for the statistical characteristics of individual human trajectories. Here we use empirical data on human mobility, captured by mobile-phone traces, to show that the predictions of the CTRW models are in systematic conflict with the empirical results. We introduce two principles that govern human trajectories, allowing us to build a statistically self-consistent microscopic model for individual human mobility. The model accounts for the empirically observed scaling laws, but also allows us to analytically predict most of the pertinent scaling exponents.
引用
收藏
页码:818 / 823
页数:6
相关论文
共 40 条
[1]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[2]   Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility [J].
Balcan, Duygu ;
Hu, Hao ;
Goncalves, Bruno ;
Bajardi, Paolo ;
Poletto, Chiara ;
Ramasco, Jose J. ;
Paolotti, Daniela ;
Perra, Nicola ;
Tizzoni, Michele ;
Van den Broeck, Wouter ;
Colizza, Vittoria ;
Vespignani, Alessandro .
BMC MEDICINE, 2009, 7 :45
[3]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[4]  
Ben-Avraham D., 2000, Diffusion and reactions in fractals and disordered systems
[5]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[6]   Levy flights in dobe ju/'hoansi foraging patterns [J].
Brown, Clifford T. ;
Liebovitch, Larry S. ;
Glendon, Rachel .
HUMAN ECOLOGY, 2007, 35 (01) :129-138
[7]   Discretized diffusion processes [J].
Ciliberti, S ;
Caldarelli, G ;
De los Rios, P ;
Pietronero, L ;
Zhang, YC .
PHYSICAL REVIEW LETTERS, 2000, 85 (23) :4848-4851
[8]   Predictability and epidemic pathways in global outbreaks of infectious diseases:: the SARS case study [J].
Colizza, Vittoria ;
Barrat, Alain ;
Barthelemy, Marc ;
Vespignani, Alessandro .
BMC MEDICINE, 2007, 5 (1)
[9]   Strong anomaly in diffusion generated by iterated maps [J].
Dräger, J ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 2000, 84 (26) :5998-6001
[10]   Concerning the static phase to phase procedures. [J].
Eggenberger, F ;
Polya, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1923, 3 :279-289