Models for Stationary Max-Stable Random Fields

被引:9
作者
Martin Schlather
机构
[1] University of Bayreuth,Soil Physics Group
关键词
bivariate extreme value distribution; dependence function; Gaussian random field; max-stable random field; rainfall modeling; simulation of max-stable processes;
D O I
10.1023/A:1020977924878
中图分类号
学科分类号
摘要
Models for stationary max-stable random fields are revisited and illustrated by two-dimensional simulations. We introduce a new class of models, which are based on stationary Gaussian random fields, and whose realizations are not necessarily semi-continuous functions. The bivariate marginal distributions of these random fields can be calculated, and they form a new class of bivariate extreme value distributions.
引用
收藏
页码:33 / 44
页数:11
相关论文
共 25 条
[1]  
Casson E.(1999)Spatial regression models for extremes Extremes 1 449-468
[2]  
Coles S.G.(2000)Simulation and extremal analysis of hurricane events J. R. Statist. Soc., Ser. C 49 227-245
[3]  
Casson E.(1993)Regional modelling of extreme storms via max-stable processes J. R. Statist. Soc., Ser. B. 55 797-816
[4]  
Coles S.G.(1996)Modelling extremes of the areal rainfall process J. R. Statist. Soc., Ser. B 58 329-347
[5]  
Coles S.G.(1993)Prediction of stationary max-stable processes Ann. Appl. Probab. 3 497-525
[6]  
Coles S.G.(1984)A spectral representation for max-stable processes Ann. Probab. 12 1194-1204
[7]  
Tawn J.A.(1986)Stationary min-stable stochastic processes Probab. Th. Rel. Fields. 72 477-492
[8]  
Davis R.A.(1983)Point processes and multivariate extreme values J. Multivar. Anal. 13 257-272
[9]  
Resnick S.I.(1990)Max-infinitely divisible and max-stable sample continuous processes Probab. Th. Rel. Fields 87 139-165
[10]  
de Haan L.(1994)Some limit theorems for extremal and union shot-noise processes Math. Nachr. 168 139-159