Game Logic and its Applications II

被引:3
作者
Kaneko M. [1 ]
Nagashima T. [1 ]
机构
[1] Institute of Socio-Economic Planning, University of Tsukuba
关键词
Common knowledge; Infinitary predicate KD4; Nash equilibrium; Undecidability on playability;
D O I
10.1023/A:1004975724824
中图分类号
学科分类号
摘要
This paper provides a Genzten style formulation of the game logic framework GLm (0 ≤ m ≤ ω), and proves the cut-elimination theorem for GLm. As its application, we prove the term existence theorem for GLω used in Part I. © 1997 Kluwer Academic Publishers.
引用
收藏
页码:273 / 303
页数:30
相关论文
共 8 条
[1]  
Gentzen G., Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, 39, pp. 176-210, (1935)
[2]  
Investigations into Logical Deduction, The Collected Papers of Gerhard Gentzen, (1969)
[3]  
Harrop R., On Disjunctions and Existential Statements in Intuitionistic Systems of Logic', Math, Annalen, 132, pp. 247-361, (1956)
[4]  
Harrop R., Concerning Formulas of the Types A → B V C, A → (Ex)B(x) in Intuitionistic Formal System', J, Symbolic Logic, 25, pp. 247-361, (1960)
[5]  
Kaneko M., Nagashima T., Game Logic and Its Applications I', to Appear in Studio, Logica, (1996)
[6]  
Ohnishi M., Matsumoto K., Gentzen Method in Modal Calculi, I', Osaka Math. J., 9, pp. 113-130, (1957)
[7]  
Ohnishi M., Matsumoto K., Gentzen Method in Modal Calculi, II', Osaka Math. J., 11, pp. 115-120, (1959)
[8]  
Van Dalen D., INTUITIONISTIC LOGIC', Handbook of Philosophical Logic (III), eds, D. Gabbay and F. Guenthner, Reidel, pp. 225-339, (1986)