Negative staining and image classification - Powerful tools in modern electron microscopy

被引:516
作者
Ohi M. [1 ]
Li Y. [2 ]
Cheng Y. [1 ]
Walz T. [1 ]
机构
[1] Department of Cell Biology, Harvard Medical School, Boston, MA 02115
[2] Dept. Biol. Chem./Molec. Pharmacol., Harvard Medical School, Boston, MA 02115
关键词
Electron; Microscopy; Negative staining; Protein conformation;
D O I
10.1251/bpo70
中图分类号
学科分类号
摘要
Vitrification is the state-of-the-art specimen preparation technique for molecular electron microscopy (EM) and therefore negative staining may appear to be an outdated approach. In this paper we illustrate the specific advantages of negative staining, ensuring that this technique will remain an important tool for the study of biological macromolecules. Due to the higher image contrast, much smaller molecules can be visualized by negative staining. Also, while molecules prepared by vitrification usually adopt random orientations in the amorphous ice layer, negative staining tends to induce preferred orientations of the molecules on the carbon support film. Combining negative staining with image classification techniques makes it possible to work with very heterogeneous molecule populations, which are difficult or even impossible to analyze using vitrified specimens. © 2004. Biological Procedures Online.
引用
收藏
页码:23 / 34
页数:11
相关论文
共 34 条
[1]  
Radermacher M., Wagenknecht T., Verschoor A., Frank J., Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli, J. Microsc., 146, pp. 113-136, (1987)
[2]  
Adrian M., Dubochet J., Lepault J., McDowall A.W., Cryoelectron microscopy of viruses, Nature, 308, pp. 32-36, (1984)
[3]  
Orlova E.V., Rahman M.A., Gowen B., Volynski K.E., Ashton A.C., Manser C., van Heel M., Ushkaryov Y.A., Structure of alpha-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores, Nat. Struct. Biol., 7, pp. 48-53, (2000)
[4]  
Stark H., Dube P., Luhrmann R., Kastner B., Arrangement of RNA and proteins in the spliceosomal U1 small nuclear ribonucleoprotein particle, Nature, 409, pp. 539-542, (2001)
[5]  
Cheng Y., Zak O., Aisen P., Harrison S.C., Walz T., Structure of the human transferrin receptor-transferrin complex, Cell, 116, pp. 565-576, (2004)
[6]  
Van Heel M., Angular reconstitution: A posteriori assignment of projection directions for 3D reconstruction, Ultramicroscopy, 21, pp. 111-123, (1987)
[7]  
Lederkremer G.Z., Cheng Y., Petre B.M., Vogan E., Springer S., Schekman R., Walz T., Kirchhausen T., Structure of the Sec23p/24p and Sec13p/31p complexes of COPII, Proc. Natl. Acad. Sci. USA, 98, pp. 10704-10709, (2001)
[8]  
Toth E.A., Li Y., Sawaya M.R., Cheng Y., Ellenberger T., The crystal structure of the bifunctional primase-helicase of bacteriophage T7, Mol. Cell, 12, pp. 1113-1123, (2003)
[9]  
Takagi J., Petre B.M., Walz T., Springer T.A., Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling, Cell, 110, pp. 599-611, (2002)
[10]  
Takagi J., Strokovich K., Springer T.A., Walz T., Structure of integrin α5β1 in complex with fibronectin, EMBO J., 22, pp. 4607-4615, (2003)