Filtration consistent nonlinear expectations and evaluations of contingent claims

被引:25
作者
Peng S. [1 ]
机构
[1] Institute of Mathematics, Shandong University
来源
Acta Mathematicae Applicatae Sinica, English Series | 2004年 / 20卷 / 2期
基金
中国国家自然科学基金;
关键词
Backward stochastic differential equation; Dynamic programming principle; Measure of risk; Nonlinear Markov property; Nonlinear potential theory; Option pricing;
D O I
10.1007/s10255-004-0161-3
中图分类号
学科分类号
摘要
We will study the following problem. Let Xt, t ∈ [0, T], be an Rd-valued process defined on a time interval t ∈ [0, T]. Let Y be a random value depending on the trajectory of X. Assume that, at each fixed time t ≤ T, the information available to an agent (an individual, a firm, or even a market) is the trajectory of X before t. Thus at time T , the random value of Y (ω) will become known to this agent. The question is: how will this agent evaluate Y at the time t? We will introduce an evaluation operator εt[Y ] to define the value of Y given by this agent at time t. This operator εt[·] assigns an (X s)0≤s≤T -dependent random variable Y to an (X s)0≤s≤t-dependent random variable εt[Y]. We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) with the drift coefficient b and diffusion coefficient σ containing an unknown parameter θ = θt. We then consider the so called super evaluation when the agent is a seller of the asset Y . We will prove that such super evaluation is a filtration consistent nonlinear expectation. In some typical situations, we will prove that a filtration consistent nonlinear evaluation dominated by this super evaluation is a g-evaluation. We also consider the corresponding nonlinear Markovian situation. © Springer-Verlag 2004.
引用
收藏
页码:191 / 214
页数:23
相关论文
共 29 条
  • [1] Black F., Scholes M., The pricing of options corporate Liabilities, Journal of Political Economy, 81, pp. 133-155, (1973)
  • [2] Briand P., Coquet F., Hu Y., Memin J., Peng S., A converse comparison theorem for BSDEs and related properties of g-expectations, Electron. Comm. Probab, 5, pp. 101-117, (2000)
  • [3] Chen Z., A property of backward stochastic differential equations, C.R. Acad. Sci. Paris Sér. I Math, 326, 4, pp. 483-488, (1998)
  • [4] Chen Z., Peng S., A Nonlinear Doob-Meyer type Decomposition and its Application, SUT Journal of Mathematics, 34, 2, pp. 197-208, (1998)
  • [5] Chen Z., Peng S., Continuous Properties of g-martingales, Chin. Ann. of Math, 22 B, 1, pp. 115-128, (2001)
  • [6] Chen Z., Peng S., A general downcrossing inequality for g-martingales, Statist. Probab. Lett, 46, 2, pp. 169-175, (2000)
  • [7] Coquet F., Hu Y., Memin J., Peng S., Filtration-consistent nonlinear expectations and related g-expectations, Probab. Theory Relat. Fields, 123, pp. 1-27, (2002)
  • [8] Cvitanic J., Quenez M.C., Zapatero F., Incomplete information with recursive preference, (2000)
  • [9] Duffie D., Epstein L., Stochastic differential utility, Econometrica, 60, 2, pp. 353-394, (1992)
  • [10] El Karoui N., Kapoudjian C., Pardoux E., Peng S., Quenez M.C., Reflected Solutions of Backward SDE and Related Obstacle Problems for PDEs, Ann. Probab, 25, 2, pp. 702-737, (1997)