Ways to increase the efficiency of solar cells with extremely thin absorption layers

被引:21
作者
Gavrilov S.A. [1 ]
Dronov A.A. [1 ]
Shevyakov V.I. [1 ]
Belov A.N. [1 ]
Poltoratskii E.A. [2 ]
机构
[1] Moscow Institute of Electronic Engineering, Technological University, Zelenograd, Moscow 124498
[2] Lukin Scientific Research Institute of Physical Problems, Zelenograd, Moscow
来源
Nanotechnologies in Russia | 2009年 / 4卷 / 3-4期
关键词
Solar Cell; Ohmic Contact; Recombination Loss; CuSCN; Photoelectric Converter;
D O I
10.1134/S1995078009030112
中图分类号
学科分类号
摘要
The effect of design parameters, electrical properties, and technological modes of formation on the efficiency of the photoelectrical conversion of solar cells with extremely thin absorbing layers based on the SnO2:F/ TiO2/In2S3/In x Pb1 - x S/CuSCN is investigated. It is shown that both a decrease in resistance due to an increase in roughness and a decrease in the average grain size of the TiO2 films is attained with deposition using the sol-gel method under conditions of increased humidity. The use of Ni as the contact metal to a planarizing CuSCN layer provides the reduced value of the transient resistance. The optimization of the sequential resistance of the TiO2 film and contact resistance to the CuSCN layer provided an increase in the efficiency of photoelectric converters by a factor of more than four. The structures of solar cells formed in optimal technological modes showed the following characteristics: J sc = 9 mA/cm2, U oc = 720 mV, and they had an efficiency of 2.9%. © 2009 Pleiades Publishing, Ltd.
引用
收藏
页码:237 / 243
页数:6
相关论文
共 22 条
[1]  
Basic Research Needs for Solar Energy Utilization: Report of the Basic Research Sciences Workshop on Solar Energy Utilization, (2005)
[2]  
Chopra K.L., Paulson P.D., Dutta V., Thin-Film Solar Cells: An Overview, Prog. Photovoltaics, 12, pp. 69-92, (2004)
[3]  
Gratzel M., Photoelectrochemical Cells, Nature (London), 414, pp. 338-344, (2001)
[4]  
Kruger J., Plass R., Cevey L., Piccirelli M., Gratzel M., Bach U., High-Efficiency Solid-State Photovoltaic Device Due to Inhibition of Interface Charge Recombination, Appl. Phys. Lett., 79, pp. 2085-2087, (2001)
[5]  
Kaiser I., Ernst K., Fischer Ch.-H., Konenkamp R., Rost C., Sieber I., Ch. L.M., The Eta-Solar Cell with CuInS<sub>2</sub>: A Photovoltaic Cell Concept Using an Extremely Thin Absorber (Eta), Sol. Energy Mater. Sol. Cells, 67, pp. 89-96, (2001)
[6]  
Larramona G., Chone C., Jacob A., Sakakura D., Delatouche B., Pere D., Cieren X., Nagino M., Bayon R., Nanostructured Photovoltaic Cell of the Type Titanium Dioxide, Cadmium Sulfide Thin Coating, and Copper Thiocyanate Showing High Quantum Efficiency, Chem. Mater., 18, pp. 1688-1696, (2006)
[7]  
Tena-Zaera R., Ryan M.A., Katty A., Hodes G., Bastide S., Levy-Clement C., Fabrication and Characterization of ZnO Nanowires/CdSe/CuSCN Eta-Solar Cell, C. R. Chim., 9, pp. 717-729, (2006)
[8]  
Bayon R., Musembi R., Belaidi A., Bar M., Guminskaya T., Lux-Steiner M.-Ch., Dittrich Th., Highly Structured TiO<sub>2</sub>/In(OH)<sub>x</sub>S<sub>y</sub>/PbS/ PEDOT:PSS for Photovoltaic Applications, Sol. Energy Mater. Sol. Cells, 89, pp. 13-25, (2005)
[9]  
Bisengaliev R.A., Novikov B.V., Aleskovskii V.B., Drozd V.E., Ageev D.A., Gubaidullin V.I., Savchenko A.P., Molecular Layering of 2D Films and Superlattices Based on II-VI Compounds, Fiz. Tverd. Tela (St. Petersburg), 40, 5, pp. 820-821, (1998)
[10]  
Korotcenkov G., MacSanov V., Tolstoy V., Brinzari V., Schwank J., Faglia G., Structural and Gas Response Characterization of Nano-Size SnO<sub>2</sub> Films Deposited by SILD Method, Sens. Actuators, B, 96, pp. 602-609, (2003)