High order numerical discretization for Hamilton-Jacobi equations on triangular meshes

被引:29
作者
Augoula S. [1 ]
Abgrall R. [1 ]
机构
[1] Mathematiques Appliquees de Bordeaux, Université de Bordeaux I, 351 Cours de la Libération
关键词
ε-monotonicity; Hamilton-Jacobi equation; Numerical Hamiltonian; Pk triangulation; Viscosity solution;
D O I
10.1023/A:1007633810484
中图分类号
学科分类号
摘要
In this paper we construct several numerical approximations for first order Hamilton-Jacobi equations on triangular meshes. We show that, thanks to a filtering procedure, the high order versions are non-oscillatory in the sense of satisfying the maximum principle. The methods are based on the first order Lax-Friedrichs scheme [2] which is improved here adjusting the dissipation term. The resulting first order scheme is ε-monotonic (we explain the expression in the paper) and converges to the viscosity solution as O(√Δt) for the L∞-norm. The first high order method is directly inspired by the ENO philosophy in the sense where we use the monotonic Lax-Friedrichs Hamiltonian to reconstruct our numerical solutions. The second high order method combines a spatial high order discretization with the classical high order Runge-Kutta algorithm for the time discretization. Numerical experiments are performed for general Hamiltonians and L1, L2 and L∞-errors with convergence rates calculated in one and two space dimensions show the k-th order rate when piecewise polynomial of degree k functions are used, measured in L1-norm.
引用
收藏
页码:197 / 229
页数:32
相关论文
共 28 条
[1]  
Abgrall, R., Numerical discretization of boundary conditions for Hamilton-Jacobi equations SIAM J. Numer. Anal., , preprint
[2]  
Abgrall, R., Numerical discretization of first-order Hamilton-Jacobi equations on triangular meshes (1996) Comm. Pure Appl. Math., pp. 1339-1373
[3]  
Augoula, S., (2000) Simulation du suivi d'un front de flamme dans un milieu strié homogénéisé en géométrie complexe, , Ph.D. thesis, Université de Bordeaux 1
[4]  
Augoula, S., Abgrall, R., High resolution for first-order Hamilton-Jacobi equations on triangular meshes Numer. Math., , submitted
[5]  
Augoula, S., Abgrall, R., A discontinuous projection algorithm for Hamilton-Jacobi equations (1999) LNCSE Spring Verlag, 11
[6]  
Barles, G., Solutions de Viscosité des équations de Hamilton-Jacobi (1994) Mathématiques et Applications, 17. , Springer-Verlag
[7]  
Barles, G., Souganidis, P., Convergence of approximation schemes for fully nonlinear second order equations (1991) Asymptotic Analysis, pp. 271-283
[8]  
Barth, T.J., Sethian, J.A., Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains (1998) J. Comput. Phys., 1 (145), pp. 1-40
[9]  
Benamou, J.-D., Direct computation of multivalued phase space solutions for Hamilton-Jacobi equations (1999) Comm. Pure Appl. Math., pp. 1443-1475
[10]  
Lin, C.-T., Tadmor, E., High-resolution non-oscillatory central schemes for Hamilton-Jacobi equations (2000) SIAM J. Sci. Comp., 21, pp. 2163-2186