Parameterization of m‐channel orthogonal multifilter banks

被引:23
作者
Qingtang Jiang
机构
[1] National University of Singapore,Department of Mathematics
[2] Peking University,Department of Mathematics
来源
Advances in Computational Mathematics | 2000年 / 12卷
关键词
multifilter bank; paraunitary; orthogonality; parameterization; symmetry; scaling function; multiwavelet; 42A15; 94A11; 42A38; 41A15; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
A complete parameterization for the m‐channel FIR orthogonal multifilter banks is provided based on the lattice structure of the paraunitary systems. Two forms of complete factorization of the m‐channel FIR orthogonal multifilter banks for symmetric/antisymmetric scaling functions and multiwavelets with the same symmetric center \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document} (1 + γ + γ/(m - 1)) for some nonnegative integer γ are obtained. For the case of multiplicity 2 and dilation factor m = 2, the result of the factorization shows that if the scaling function Φ and multiwavelet Ψ are symmetric/antisymmetric about the same symmetric center γ + \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{1}{2}$$ \end{document} for some nonnegative integer γ, then one of the components of Φ (respectively Ψ) is symmetric and the other is antisymmetric. Two examples of the construction of symmetric/antisymmetric orthogonal multiwavelets of multiplicity 3 with dilation factor 2 and multiplicity 2 with dilation factor 3 are presented to demonstrate the use of these parameterizations of orthogonal multifilter banks.
引用
收藏
页码:189 / 211
页数:22
相关论文
共 49 条
  • [1] Cabrelli C.(1998)Accuracy of lattice translates of several multidimensional refinable functions J. Approx. Theory 95 5-52
  • [2] Heil C.(1996)A study on orthonormal multi-wavelets J. Appl. Numer. Math. 20 273-298
  • [3] Molter U.(1997)Regularity of refinable function vectors J. Fourier Anal. and Appl. 3 295-324
  • [4] Chui C.K.(1997)Biorthogonal wavelet expansions Constr. Approx. 13 293-328
  • [5] Lian J.(1994)The structure of finitely generated shift-invariant spaces in L J. Funct. Anal. 119 37-78
  • [6] Cohen A.(1998)(ℝ Constr. Approx. 14 411-427
  • [7] Daubechies I.(1996)) SIAM J. Math. Anal. 27 1791-1815
  • [8] Plonka G.(1993)Approximation orders of FSI spaces in L Trans. Amer. Math. Soc. 338 639-654
  • [9] Dahman W.(1996)(ℝ) Numer. Math. 73 75-94
  • [10] Micchelli C.(1997)Intertwining multiresolution analysis and the construction of piecewise polynomial wavelets Canad. J. Math. 49 944-962