Ontology-based cross-species integration and analysis of Saccharomyces cerevisiae phenotypes

被引:6
作者
Gkoutos G.V. [1 ,2 ]
Hoehndorf R. [1 ,2 ]
机构
[1] Department of Genetics, University of Cambridge, Cambridge, Downing Street, Cambridge
[2] Department of Computer Science, University of Aberystwyth, Old College, King Street
基金
美国国家卫生研究院;
关键词
Gene Ontology; Heat Sensitivity; Mammalian Phenotype; Phenotype Ontology; Saccharomyces Genome Database;
D O I
10.1186/2041-1480-3-S2-S6
中图分类号
学科分类号
摘要
Ontologies are widely used in the biomedical community for annotation and integration of databases. Formal definitions can relate classes from different ontologies and thereby integrate data across different levels of granularity, domains and species. We have applied this methodology to the Ascomycete Phenotype Ontology (APO), enabling the reuse of various orthogonal ontologies and we have converted the phenotype associated data found in the SGD following our proposed patterns. We have integrated the resulting data in the cross-species phenotype network PhenomeNET, and we make both the cross-species integration of yeast phenotypes and a similarity-based comparison of yeast phenotypes across species available in the PhenomeBrowser. Furthermore, we utilize our definitions and the yeast phenotype annotations to suggest novel functional annotations of gene products in yeast. © 2012 Gkoutos and Hoehndorf; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 33 条
[1]  
Lan A., Smoly I.Y., Rapaport G., Lindquist S., Fraenkel E., Yeger-Lotem E., Responsenet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data, Nucleic Acids Res, 39, pp. W424-W429, (2011)
[2]  
Kwak Y.S., Han S., Thomashow L.S., Rice J.T., Paulitz T.C., Kim D., Weller D.M., A saccharomyces cerevisiae genome-wide mutant screen for sensitivity to 2,4-diacetylphloroglucinol, an antibiotic produced by pseudomonas fluorescens, Appl Environ Microbiol, 77, pp. 1770-1776, (2010)
[3]  
Bell G., Experimental genomics of fitness in yeast, Proceedings. Biological sciences/The Royal Society, 277, 1687, pp. 1459-1467, (2010)
[4]  
Yan Z., Berbenetz N.M., Giaever G., Nislow C., Precise gene-dose alleles for chemical genetics, Genetics, 182, 2, pp. 623-626, (2009)
[5]  
Smith C.L., Goldsmith C.A., Eppig J.T., The mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information, Genome Biology, 6, 1, (2004)
[6]  
Robinson P.N., Koehler S., Bauer S., Seelow D., Horn D., Mundlos S., The human phenotype ontology: a tool for annotating and analyzing human hereditary disease, American journal of human genetics, 83, 5, pp. 610-615, (2008)
[7]  
Sprague J., Bayraktaroglu L., Bradford Y., Conlin T., Dunn N., Fashena D., Frazer K., Haendel M., Howe D.G., Knight J., Mani P., Moxon S.A., Pich C., Ramachandran S., Schaper K., Segerdell E., Shao X., Singer A., Song P., Sprunger B., Van Slyke C.E., Monte W., The zebrafish information network: the zebrafish model organism database provides expanded support for genotypes and phenotypes, Nucleic Acids Res, 36, pp. D768-D772, (2008)
[8]  
Yamazaki Y., Jaiswal P., Biological ontologies in rice databases. an introduction to the activities in gramene and oryzabase, Plant Cell Physiol, 46, 1, pp. 63-68, (2005)
[9]  
Schindelman G., Fernandes J., Bastiani C., Yook K., Sternberg P., Worm phenotype ontology: integrating phenotype data within and beyond the c. elegans community, BMC Bioinformatics, 12, 1, (2011)
[10]  
Masuya H., Makita Y., Kobayashi N., Nishikata K., Yoshida Y., Mochizuki Y., Doi K., Takatsuki T., Waki K., Tanaka N., Ishii M., Matsushima A., Takahashi S., Hijikata A., Kozaki K., Furuichi T., Kawaji H., Wakana S., Nakamura Y., Yoshiki A., Murata T., Fukami-Kobayashi K., Mohan S., Ohara O., Hayashizaki Y., Mizoguchi R., Obata Y., Toyoda T., The RIKEN integrated database of mammals, Nucleic Acids Research, 39, pp. D861-D870, (2011)