On Topological Watersheds

被引:3
作者
Gilles Bertrand
机构
[1] Groupe ESIEE,Laboratoire A2SI
[2] Cité,Institut Gaspard Monge
[3] Unité Mixte CNRS-UMLV-ESIEE,undefined
[4] UMR 8049,undefined
来源
Journal of Mathematical Imaging and Vision | 2005年 / 22卷
关键词
mathematical morphology; discrete topology; graph; watershed; dynamics; separation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate topological watersheds (Couprie and Bertrand, 1997). One of our main results is a necessary and sufficient condition for a map G to be a watershed of a map F, this condition is based on a notion of extension. A consequence of the theorem is that there exists a (greedy) polynomial time algorithm to decide whether a map G is a watershed of a map F or not. We introduce a notion of “separation between two points” of an image which leads to a second necessary and sufficient condition. We also show that, given an arbitrary total order on the minima of a map, it is possible to define a notion of “degree of separation of a minimum” relative to this order. This leads to a third necessary and sufficient condition for a map G to be a watershed of a map F. At last we derive, from our framework, a new definition for the dynamics of a minimum.
引用
收藏
页码:217 / 230
页数:13
相关论文
共 29 条
[1]  
Bertrand G.(2004)Some properties of topological greyscale watersheds IS&T/SPIE Symposium on Electronic Imaging, Vision Geometry XII 5300 127-137
[2]  
Couprie M.(1997)Topological grayscale watershed transform SPIE Vision Geometry V Proceedings 3168 136-146
[3]  
Bertrand G.(2005)Quasi-linear algorithms for the topological watershed Journal of Mathematical Imaging and Vision 22 231-249
[4]  
Couprie M.(1991)Theoretical aspects of gray-level morphology IEEE Trans. on Pattern Analysis and Machine Intelligence 13 568-592
[5]  
Najman L.(1989)Digital topology: Introduction and survey Comp. Vision Graphics and Image Proc. 48 357-393
[6]  
Bertrand G.(1983)Structural properties of greedoids Combinatorica 3 359-374
[7]  
Heijmans H.(1994)Topographic distance and watershed lines Signal Processing 38 113-126
[8]  
Kong T.(2004)Quasi-linear algorithm for the component tree IS&T/SPIE Symposium on Electronic Imaging, Vision Geometry XII 5300 98-107
[9]  
Rosenfeld A.(1994)Watershed of a continuous function Signal Processing 38 99-112
[10]  
Korte B.(1996)Geodesic saliency of watershed contours and hierarchical segmentation IEEE Trans. on PAMI 18 1163-1173