Robust optimization – methodology and applications

被引:85
作者
Aharon Ben-Tal
Arkadi Nemirovski
机构
[1] Faculty of Industrial Engineering and Management,
[2] Technion – Israel Institute of Technology,undefined
[3] Technion City,undefined
[4] Haifa 32000,undefined
[5] Israel e-mail: {morbt,undefined
[6] nemirovs}@ie.technion.ac.il,undefined
来源
Mathematical Programming | 2002年 / 92卷
关键词
Key words: convex optimization – data uncertainty – robustness – linear programming – quadratic programming – semidefinite programming – engineering design – Lyapunov stability synthesis; Mathematics Subject Classification (1991): 90C05, 90C25, 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
Robust Optimization (RO) is a modeling methodology, combined with computational tools, to process optimization problems in which the data are uncertain and is only known to belong to some uncertainty set. The paper surveys the main results of RO as applied to uncertain linear, conic quadratic and semidefinite programming. For these cases, computationally tractable robust counterparts of uncertain problems are explicitly obtained, or good approximations of these counterparts are proposed, making RO a useful tool for real-world applications. We discuss some of these applications, specifically: antenna design, truss topology design and stability analysis/synthesis in uncertain dynamic systems. We also describe a case study of 90 LPs from the NETLIB collection. The study reveals that the feasibility properties of the usual solutions of real world LPs can be severely affected by small perturbations of the data and that the RO methodology can be successfully used to overcome this phenomenon.
引用
收藏
页码:453 / 480
页数:27
相关论文
empty
未找到相关数据