A geometrical approach to monotone functions in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb R^n$\end{document}

被引:3
作者
Giovanni Alberti
Luigi Ambrosio
机构
[1] Dipartimento di Matematica Applicata “U. Dini”,
[2] via Bonanno 25/B,undefined
[3] I-56126 Pisa,undefined
[4] Italy (e-mail: alberti@sns.it) ,undefined
[5] Dipartimento di Matematica “F. Casorati”,undefined
[6] via Abbiategrasso 215,undefined
[7] I-27100 Pavia,undefined
[8] Italy (e-mail: ambrosio@dragon.ian.pv.cnr.it) ,undefined
关键词
Mathematics Subject Classification (1991): 26B05, 26B25, 49Q15, 58A25, 47H05;
D O I
10.1007/PL00004691
中图分类号
学科分类号
摘要
The paper is concerned with the fine properties of monotone functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mathbb{R}^n$\end{document}. We study the continuity and differentiability properties of these functions, the approximability properties, the structure of the distributional derivatives and of the weak Jacobians. Moreover, we exhibit an example of a monotone function u which is the gradient of a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $C^{1,\alpha}$\end{document} convex function and whose weak Jacobian Ju is supported on a purely unrectifiable set.
引用
收藏
页码:259 / 316
页数:57
相关论文
empty
未找到相关数据