Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot

被引:183
作者
Su L. [1 ]
Chen L. [1 ,2 ]
Egli M. [3 ]
Berger J.M. [1 ,4 ,5 ]
Rich A. [1 ]
机构
[1] Department of Biology, Massachusetts Inst. of Technology, Cambridge
[2] Laboratory for Structural Biology, Dept. of Chem. and Materials Science, University of Alabama, Huntsville
[3] Dept. Molec. Pharmacol./Biol. Chem., Drug Discovery Program, NW University Medical School, Chicago
[4] Whitehead Institute, Department of Biology, Massachusetts Inst. of Technology, Cambridge
[5] Dept. of Molecular and Cell Biology, University of California, Berkeley
基金
美国国家卫生研究院; 美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1038/6722
中图分类号
学科分类号
摘要
Many viruses regulate translation of polycistronic mRNA using a -1 ribosomal frameshift induced by an RNA pseudoknot. A pseudoknot has two stems that form a quasi-continuous helix and two connecting loops. A 1.6 Å crystal structure of the beet western yellow virus (BWYV) pseudoknot reveals rotation and a bend at the junction of the two stems. A loop base is inserted in the major groove of one stem with quadruple-base interactions. The second loop forms a new minor-groove triplex motif with the other stem, involving 2'-OH and triple-base interactions, as well as sodium ion coordination. Overall, the number of hydrogen bonds stabilizing the tertiary interactions exceeds the number involved in Watson-Crick base pairs. This structure will aid mechanistic analyses of ribosomal frameshifting.
引用
收藏
页码:285 / 292
页数:7
相关论文
共 15 条
  • [1] Gesteland R.F., Atkins J.F., Recoding: Dynamic reprogramming of translation, Annu. Rev. Biochem., 65, pp. 741-768, (1996)
  • [2] Farabaugh P.J., Programmed translational frameshifting, Microbiol. Rev., 60, pp. 103-134, (1996)
  • [3] Jacks T., Madhani H.D., Masiarz F.R., Varmus H.E., Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region, Cell, 55, pp. 447-458, (1988)
  • [4] Chamorro M., Parkin N., Varmus H.E., An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA, Proc. Natl. Acad. Sci. USA, 89, pp. 713-717, (1992)
  • [5] Ten Dam E., Brierley I., Inglis S., Pleij C., Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1, Nucleic Acids Res., 22, pp. 2304-2310, (1994)
  • [6] Brierley I., Rolley N.J., Jenner A.J., Inglis S.C., Mutational analysis of the RNA pseudoknot component of a coronavirus ribosomal frameshifting signal, J. Mol. Biol., 220, pp. 889-902, (1991)
  • [7] Tzeng T.-H., Tu C.-L., Bruenn J.A., Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus, J. Virol., 66, pp. 999-1006, (1992)
  • [8] Miller W.A., Dinesh-Kumar S.P., Paul C.P., Luteovirus gene expression, Crit. Rev. Plant Sci., 14, pp. 179-211, (1995)
  • [9] Somogyi P., Jenner A.J., Brierley I., Inglis S.C., Ribosomal pausing during translation of an RNA pseudoknot, Mol. Cell. Biol., 13, pp. 6931-6940, (1993)
  • [10] Pleij C.W.A., Rietveld K., Bosch L., A new principle of RNA folding on pseudoknotting, Nucleic Acids Res., 13, pp. 1717-1731, (1985)