Symplectic And Multisymplectic Fourier Pseudospectral Discretizations for the Klein–Gordon Equation

被引:19
作者
Jing-Bo Chen
机构
[1] Chinese Academy of Sciences,Institute of Geology and Geophysics
来源
Letters in Mathematical Physics | 2006年 / 75卷
关键词
70G50; 58Z05; symplectic; multisymplectic; multiKlein–Gordon equation;
D O I
暂无
中图分类号
学科分类号
摘要
We present symplectic and multisymplectic formulations of the Klein-Gordon equation in this paper. Based on these two formulations, we investigate the corresponding symplectic and multisymplectic Fourier pseudospectral discretizations. The relationship between these two kinds of Fourier pseudospectral discretizations is discussed. Time discretizations are also presented.
引用
收藏
页码:293 / 305
页数:12
相关论文
共 16 条
[1]  
Bridges T.J.(1997)Multi-symplectic structures and wave propagation Math. Proc. Camb. Philos. Soc. 121 147-190
[2]  
Bridges T.J.(2001)Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 184-193
[3]  
Reich S.(2001)Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations Physica D 152 491-504
[4]  
Bridges T.J.(2002)Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators Lett. Math. Phys. 61 63-73
[5]  
Reich S.(2003)Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov-Kuznetsov equation Lett. Math. Phys. 63 115-124
[6]  
Chen J.B.(2005)Variational formulation for the multisymplectic Hamitonian systems Lett. Math. Phys. 71 243-253
[7]  
Chen J.B.(2001)Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equation Electr. Trans. Numer. Anal. 12 193-204
[8]  
Chen J.B.(1997)Symplectic finite difference approximations of the nonlinear Klein–Gordon equation SIAM J. Numer. Anal. 34 1742-1760
[9]  
Chen J.B.(1990)Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations Comput. Math. Appl. 19 51-62
[10]  
Qin M.Z.(2000)Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations J. Comp. Phys. 157 473-499