PERCOLATION AS A FRACTAL GROWTH PROBLEM

被引:14
作者
PIETRONERO, L [1 ]
STELLA, A [1 ]
机构
[1] UNIV PADUA,DIPARTIMENTO FIS G GALILEI,I-35100 PADUA,ITALY
来源
PHYSICA A | 1990年 / 170卷 / 01期
关键词
D O I
10.1016/0378-4371(90)90088-A
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider percolation in two dimensions as a fractal growth problem, and apply to it the theory of fractal growth based on the fixed-scale transformation approach developed for diffusion-limited aggregation and the dielectric breakdown model. This represents an important test for this new theoretical method based on an additional invariance property with respect to the renormalization group. We compute the fractal dimension of the percolating cluster including terms up to third order. The result is D = 1.8830 for the square lattice and D = 1.8650 for the triangular lattice. These values are in excellent agreement with the universal exact result D = 91/48 = 1.8958 and also show the potential of this new method for standard problems.
引用
收藏
页码:64 / 80
页数:17
相关论文
共 17 条
[1]  
AHARONY A, 1989, PHYSICA D, V38
[2]  
DEANGELIS R, IN PRESS SCALE INVAR
[3]  
GEFEN Y, 1983, PHYS REV B, V27, P1674
[4]  
GEFEN Y, 1979, J PHYS A, V12, P1857
[5]   SCALING AND UNIVERSALITY IN STATISTICAL PHYSICS [J].
KADANOFF, LP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1990, 163 (01) :1-14
[6]  
KADANOFF LP, 1986, PHYSICS TODAY FEB, P6
[7]   FRACTAL DIMENSION OF DIELECTRIC-BREAKDOWN [J].
NIEMEYER, L ;
PIETRONERO, L ;
WIESMANN, HJ .
PHYSICAL REVIEW LETTERS, 1984, 52 (12) :1033-1036
[8]   THEORY OF FRACTAL GROWTH [J].
PIETRONERO, L ;
ERZAN, A ;
EVERTSZ, C .
PHYSICAL REVIEW LETTERS, 1988, 61 (07) :861-864
[9]   THEORY OF LAPLACIAN FRACTALS - DIFFUSION LIMITED AGGREGATION AND DIELECTRIC-BREAKDOWN MODEL [J].
PIETRONERO, L ;
ERZAN, A ;
EVERTSZ, C .
PHYSICA A, 1988, 151 (2-3) :207-245
[10]   THEORY OF FRACTAL GROWTH [J].
PIETRONERO, L .
PHYSICA A, 1990, 163 (01) :316-324