EXTREMAL EIGENVALUE PROBLEMS FOR COMPOSITE MEMBRANES .2.

被引:43
作者
COX, SJ [1 ]
MCLAUGHLIN, JR [1 ]
机构
[1] RENSSELAER POLYTECH INST,DEPT MATH SCI,TROY,NY 12180
关键词
D O I
10.1007/BF01447326
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an open bounded connected set Ω ⊂RN and a prescribed amount of two homogeneous materials of different density, for small k we characterize the distribution of the two materials in Ω that extremizes the kth eigenvalue of the resulting clamped membrane. We show that these extremizers vary continuously with the proportion of the two constituents. The characterization of the extremizers in terms of level sets of associated eigenfunctions provides geometric information on their respective interfaces. Each of these results generalizes to N dimensions the now classical one-dimensional work of M. G. Krein. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:169 / 187
页数:19
相关论文
共 27 条
[1]  
Attouch H., 1984, VARIATIONAL CONVERGE
[2]  
AUCHMUTY G, 1986, NONLINEAR FUNCTIONAL, P55
[3]  
BOCCARDO L, 1977, ANN MAT PUR APPL, V4, P137
[4]  
BOURBAKI N., 1987, ELEMENTS MATH
[5]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[6]   AN EXAMPLE OF A MAX-MIN PROBLEM IN PARTIAL DIFFERENTIAL EQUATIONS [J].
CEA, J ;
MALANOWS.K .
SIAM JOURNAL ON CONTROL, 1970, 8 (03) :305-&
[7]   ON THE GEOMETRY OF LEVEL SETS OF POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS [J].
COSNER, C ;
SCHMITT, K .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1988, 18 (02) :277-286
[8]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[9]   EXTREMAL EIGENVALUE PROBLEMS DEFINED FOR CERTAIN CLASSES OF FUNCTIONS [J].
FRIEDLAND, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1977, 67 (01) :73-81
[10]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243