QUANTUM-MECHANICAL EQUATION OF STATE OF A HARD-SHPERE GAS AT HIGH TEMPERATURE

被引:75
作者
JANCOVICI, B
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Faculté des Sciences
来源
PHYSICAL REVIEW | 1969年 / 178卷 / 01期
关键词
D O I
10.1103/PhysRev.178.295
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum-mechanical free energy F of a hard-sphere gas at high temperature is a series in powers of the thermal wavelength λ=(2π2mkT) 12; the coefficients of this series can be expressed in terms of the classical correlation functions. The result to first order is FNk T=F(0)Nk T+π2 g2(a)a2ρλ, where F (0) is the classical free energy, N the total number of particles, ρ the number density, k T Boltzmann's factor times the temperature, a the hard-sphere diameter, g2(a) the classical pair-correlation function at contact. The corresponding expression for the pressure is p=p(0)+322 λa ρ2, ρp(0)ρ where p(0) is the classical pressure. The principle of a systematic derivation of higher-order terms in λ is given. © 1969 The American Physical Society.
引用
收藏
页码:295 / +
页数:1
相关论文
共 10 条
[1]  
DEBOER J, 1965, STUDIES STATISTICAL, V3, P277
[2]   QUANTUM-MECHANICAL SECOND VIRIAL COEFFICIENT OF A HARD-SPHERE GAS AT HIGH TEMPERATURE [J].
HANDELSMAN, RA ;
KELLER, JB .
PHYSICAL REVIEW, 1966, 148 (01) :94-+
[3]   HARD CORE QUANTUM GAS AT HIGH TEMPERATURES [J].
HEMMER, PC .
PHYSICS LETTERS A, 1968, A 27 (06) :377-&
[4]   QUANTUM-MECHANICAL SECOND VIRIAL COEFFICIENT OF A HARD-SPHERE GAS AT HIGH TEMPERATURES [J].
HEMMER, PC ;
MORK, KJ .
PHYSICAL REVIEW, 1967, 158 (01) :114-+
[5]  
KAHN B, 1965, STUDIES STATISTICAL, V3, P277
[6]  
KAHN B, 1938, THESIS U UTRECHT
[7]   Quantum statistics of almost classical assemblies [J].
Kirwood, JG .
PHYSICAL REVIEW, 1933, 44 (01) :31-37
[9]   The quantum theory of the non-ideal gas I. Deviations from the classical theory [J].
Uhlenbeck, GE ;
Beth, E .
PHYSICA, 1936, 3 :729-745
[10]   On the quantum correction for thermodynamic equilibrium [J].
Wigner, E .
PHYSICAL REVIEW, 1932, 40 (05) :0749-0759