REAL VALUES OF THE W-FUNCTION

被引:74
作者
BARRY, DA [1 ]
CULLIGANHENSLEY, PJ [1 ]
BARRY, SJ [1 ]
机构
[1] GRIFFITH UNIV,FAC ENVIRONM SCI,NATHAN,QLD 4111,AUSTRALIA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 1995年 / 21卷 / 02期
关键词
W-FUNCTION;
D O I
10.1145/203082.203084
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Approximations for real values of W(x), where W is defined by solutions of W exp(W) = x, are presented. All of the approximations have maximum absolute (\W\ > 1) or relative (\W\ < 1) errors of 0(10(-4)). With these approximations an efficient algorithm, consisting of a single iteration of a rapidly converging iteration scheme, gives estimates of W(x) accurate to at least 16 significant digits (15 digits if double precision is used). The Fortran code resulting from the algorithm is written to account for the different floating-point-number mantissa lengths on different computers, so that W(x) is computed to the floating-point precision available on the host machine.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 10 条
[1]   A CLASS OF EXACT-SOLUTIONS FOR RICHARDS EQUATION [J].
BARRY, DA ;
PARLANGE, JY ;
SANDER, GC ;
SIVAPALAN, M .
JOURNAL OF HYDROLOGY, 1993, 142 (1-4) :29-46
[2]  
BARRY DA, 1995, ACM T MATH SOFTWARE, V21, P172, DOI 10.1145/203082.203088
[3]  
CHAR BW, 1991, MAPLE V LIBRARY REFE
[4]  
DEBRUIJN NG, 1958, ASYMPTOTIC METHODS A, P25
[5]  
EULER L, 1921, LEONHARDI EULERI OPE, V6
[6]   SOLUTION OF TRANSCENDENTAL EQUATION WEW = X [C5] [J].
FRITSCH, FN ;
SHAFER, RE ;
CROWLEY, WP .
COMMUNICATIONS OF THE ACM, 1973, 16 (02) :123-124
[7]  
GREEN DH, 1981, MATH ANAL ALGORITHMS, P47
[8]  
LORENTZEN L, 1992, CONTINUED FRACTIONS, P21
[9]  
OLIVER FWJ, 1990, HDB APPLIED MATH, P633
[10]  
POLYA G, 1972, PROBLEMS THEOREMS AN, V1, P146