MODULATION OF CARDIAC NA+ CHANNEL EXPRESSION IN XENOPUS OOCYTES BY BETA-1 SUBUNITS

被引:108
作者
QU, YS
ISOM, LL
WESTENBROEK, RE
ROGERS, JC
TANADA, TN
MCCORMICK, KA
SCHEUER, T
CATTERALL, WA
机构
[1] Department of Pharmacology, Box 357280, University of Washington, Seattle
[2] Dept. of Pharmacology, School of Medicine, University of Michigan, Ann Arbor
[3] Howard Hughes Medical Institute, Depts. Med. Physiol. and Biophys., University of Iowa, Iowa City
关键词
D O I
10.1074/jbc.270.43.25696
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Voltage-gated Na+ channels consist of a large alpha subunit of 260 kDa associated with beta 1 and/or beta 2 subunits of 36 and 33 kDa, respectively. alpha subunits of rat cardiac Na+ channels (rH1) are functional when expressed alone in Xenopus oocytes or mammalian cells. beta 1 subunits are present in the heart, and localization of beta 1 subunit mRNA by in situ hybridization shows expression in the perinuclear cytoplasm of cardiac myocytes. Coexpression of beta 1 subunits with rH1 alpha subunits in Xenopus oocytes increases Na+ currents up to 6-fold in a concentration dependent manner. However, no effects of beta 1 subunit coexpression on the kinetics or voltage dependence of the rH1 Na+ current were detected. Increased expression of Na+ currents is not observed when an equivalent mRNA encoding a nonfunctional mutant beta 1 subunit is coexpressed. Our results show that beta 1 subunits are expressed in cardiac muscle cells and that they interact with alpha subunits to increase the expression of cardiac Na+ channels in Xenopus oocytes, suggesting that beta 1 subunits are important determinants of the level of excitability of cardiac myocytes in vivo.
引用
收藏
页码:25696 / 25701
页数:6
相关论文
共 45 条
[1]   IDENTIFICATION OF A LARGE MOLECULAR-WEIGHT PEPTIDE ASSOCIATED WITH A TETRODOTOXIN BINDING-PROTEIN FROM THE ELECTROPLAX OF ELECTROPHORUS-ELECTRICUS [J].
AGNEW, WS ;
MOORE, AC ;
LEVINSON, SR ;
RAFTERY, MA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1980, 92 (03) :860-866
[2]   A RAT-BRAIN NA+ CHANNEL ALPHA-SUBUNIT WITH NOVEL GATING PROPERTIES [J].
AULD, VJ ;
GOLDIN, AL ;
KRAFTE, DS ;
MARSHALL, J ;
DUNN, JM ;
CATTERALL, WA ;
LESTER, HA ;
DAVIDSON, N ;
DUNN, RJ .
NEURON, 1988, 1 (06) :449-461
[3]   VOLTAGE-DEPENDENT ACTION OF TETRODOTOXIN IN MAMMALIAN CARDIAC-MUSCLE [J].
BAER, M ;
BEST, PM ;
REUTER, H .
NATURE, 1976, 263 (5575) :344-345
[4]   PROTEIN-COMPONENTS OF THE PURIFIED SODIUM-CHANNEL FROM RAT SKELETAL-MUSCLE SARCOLEMMA [J].
BARCHI, RL .
JOURNAL OF NEUROCHEMISTRY, 1983, 40 (05) :1377-1385
[5]   A MOLECULAR-BASIS FOR GATING MODE TRANSITIONS IN HUMAN SKELETAL-MUSCLE NA+ CHANNELS [J].
BENNETT, PB ;
MAKITA, N ;
GEORGE, AL .
FEBS LETTERS, 1993, 326 (1-3) :21-24
[6]   SODIUM-CHANNEL MESSENGER-RNA-I, MESSENGER-RNA-II AND MESSENGER-RNA-III IN THE CNS - CELL-SPECIFIC EXPRESSION [J].
BLACK, JA ;
YOKOYAMA, S ;
HIGASHIDA, H ;
RANSOM, BR ;
WAXMAN, SG .
MOLECULAR BRAIN RESEARCH, 1994, 22 (1-4) :275-289
[7]  
BROWN AM, 1981, J PHYSIOL-LONDON, V318, P455
[8]   MODIFICATION OF THE NA+ CURRENT CONDUCTED BY THE RAT SKELETAL-MUSCLE ALPHA-SUBUNIT BY COEXPRESSION WITH A HUMAN BRAIN BETA-SUBUNIT [J].
CANNON, SC ;
MCCLATCHEY, AI ;
GUSELLA, JF .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1993, 423 (1-2) :155-157
[9]   CELLULAR AND MOLECULAR-BIOLOGY OF VOLTAGE-GATED SODIUM-CHANNELS [J].
CATTERALL, WA .
PHYSIOLOGICAL REVIEWS, 1992, 72 (04) :S15-S48
[10]   PARTIAL CHARACTERIZATION OF THE RH1 SODIUM-CHANNEL PROTEIN FROM RAT-HEART USING SUBTYPE-SPECIFIC ANTIBODIES [J].
COHEN, SA ;
LEVITT, LK .
CIRCULATION RESEARCH, 1993, 73 (04) :735-742