A DYNAMIC SYSTEM WITH INTEGER INFORMATION DIMENSION AND FRACTAL CORRELATION EXPONENT

被引:4
作者
CUTLER, CD
机构
[1] Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, N2L 3G1, Ontario
关键词
D O I
10.1007/BF02097108
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we construct a family {Tγ}, 0<γ<1/2, of exact endomorphisms of [0, 1] such that the invariant measure mγ of Tγ is equivalent to Lebesgue measure but has fractal correlation exponent ν=2γ. This shows that an almost complete dichotomy can exist between the information dimension and the correlation exponent in observable dynamical systems. © 1990 Springer-Verlag.
引用
收藏
页码:621 / 629
页数:9
相关论文
共 11 条
[1]  
Collet P., 1983, ERGOD THEOR DYN SYST, V3, P13
[2]  
CUTLER CD, 1989, SOME RESULTS BEHAVIO
[3]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[4]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[5]   CHARACTERIZATION OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1983, 50 (05) :346-349
[6]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[7]   ERGODIC PROPERTIES OF INVARIANT-MEASURES FOR PIECEWISE MONOTONIC TRANSFORMATIONS [J].
HOFBAUER, F ;
KELLER, G .
MATHEMATISCHE ZEITSCHRIFT, 1982, 180 (01) :119-140
[8]  
Ma~n~e R., 1987, ERGODIC THEORY DIFFE
[9]   ABSOLUTELY CONTINUOUS MEASURES FOR CERTAIN MAPS OF AN INTERVAL [J].
MISIUREWICZ, M .
PUBLICATIONS MATHEMATIQUES DE L IHES, 1981, (53) :17-51
[10]   SYMMETRICAL S-UNIMODAL MAPPINGS AND POSITIVE LIAPUNOV EXPONENTS [J].
NOWICKI, T .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 :611-616