EFFECT OF ANELASTIC AND SCATTERING STRUCTURES OF THE LITHOSPHERE ON THE SHAPE OF LOCAL EARTHQUAKE CODA

被引:9
作者
CHOUET, B
机构
[1] U.S. Geological Survey, Menlo Park, 94025, California
关键词
attenuation; coda waves; heterogeneity; High frequency seismic waves; quality factor of coda; scattering;
D O I
10.1007/BF00874367
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A simple model of single acoustic scattering is used to study the dependence of the shape of local earthquake coda on the anelastic and scattering structures of the lithosphere. The model is applied to the coda of earthquakes located near Stone Canyon, central California, and provides an explanation for the features observed in the data, which include an interesting temporal variation in the coda shape. A surficial layer with a Q of 50 and thickness of 10 or 25 km underlain by a zone with a Q of 1000 extending to the bottom of the lithosphere, together with a scattering scale length, a, that varies with depth z according to the relation a=0.3 exp[-(z/45)2] are found to constitute the simplest structure of the medium compatible with the coda data and with body and surface wave attenuation data. The profile of heterogeneity sizes implies that the scattering strength increases strongly with depth, a constraint required by the necessity to boost the energy of the later coda without forcing the intrinsic Q to be excessively high in the uppermost mantle. This constraint is viewed as an artifact of the single scattering model which overstimates the scattering coefficient due to the neglect of multiple scattering. The observed temporal variation of the signal is difficult to explain by a simple change of the intrinsic Q at some depth. Rather, it is suggested that the scattering properties at depth changed with time through a variation of the fractional rms velocity fluctuation on the order of one percent. © 1990 Birkhäuser Verlag.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 38 条
[1]  
Aki K., Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves, Journal of Geophysical Research, 74, pp. 615-631, (1969)
[2]  
Aki K., Attenuation of Shear Waves in the Lithosphere for Frequencies from 0.05 to 25 Hz, Phys. Earth Plan. Int., 21, pp. 50-60, (1980)
[3]  
Aki K., Scattering and Attenuation of Shear Waves in the Lithosphere, J. Geophys. Res., 85, pp. 6496-6504, (1980)
[4]  
Aki K., Theory of Earthquake Prediction with Special Reference to Monitoring of the Quality Factor of the Lithosphere by the Coda Method, Earthq. Predict. Res., 3, pp. 219-230, (1985)
[5]  
Aki K., Chouet B., Origin of Coda-waves: Source, Attenuation, and Scattering Effects, Journal of Geophysical Research, 80, pp. 3322-3342, (1975)
[6]  
Bakun W.H., Bufe C.G., Shear-wave Attenuation along the San Andreas Fault Zone in Central California, Bull. Seismol. Soc. Am., 65, pp. 439-459, (1975)
[7]  
Bakun W.H., Bufe C.G., Stewart R.M., Body-wave Spectra of Central California Earthquakes, Bull. Seismol. Soc. Am., 66, pp. 363-384, (1976)
[8]  
Chernov L.A., Wave Propagation in a Random Medium, pp. 35-57, (1960)
[9]  
Chouet B., Source, Scattering and Attenuation Effects on High Frequency Seismic Waves, Ph. D. Thisis, (1976)
[10]  
Chouet B., Temporal Variation in the Attenuation of Earthquake Coda near Stone Canyon, California, Geophysical Research Letters, 6, pp. 143-146, (1979)