ON PRACTICAL CONDITIONS FOR THE EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE GENERAL EQUALITY QUADRATIC-PROGRAMMING PROBLEM

被引:67
作者
GOULD, NIM
机构
[1] Univ of Waterloo, Dep of, Combinatorics & Optimization,, Waterloo, Ont, Can, Univ of Waterloo, Dep of Combinatorics & Optimization, Waterloo, Ont, Can
关键词
D O I
10.1007/BF01585660
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Practical conditions are presented under which the existence and uniqueness of a finite solution to a given equality quadratic program may be examined. Different sets of conditions allow this examination to take place when null-space, range-space or Lagrangian methods are used to find stationary points for the quadratic program.
引用
收藏
页码:90 / 99
页数:10
相关论文
共 29 条
[1]  
AFRIAT SN, 1951, P CAMB PHILOS SOC, V47, P1
[2]  
BUNCH JR, 1977, MATH COMPUT, V31, P163, DOI 10.1090/S0025-5718-1977-0428694-0
[3]   A COMPUTATIONAL METHOD FOR THE INDEFINITE QUADRATIC-PROGRAMMING PROBLEM [J].
BUNCH, JR ;
KAUFMAN, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 34 (DEC) :341-370
[4]   DIRECT METHODS FOR SOLVING SYMMETRIC INDEFINITE SYSTEMS OF LINEAR EQUATIONS [J].
BUNCH, JR ;
PARLETT, BN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :639-&
[5]  
CONN AR, UNPUB SIAM J NUMERIC
[6]  
Cottle R. W., 1974, LINEAR ALGEBRA APPL, V8, P189
[7]   PARTIAL PIVOTING STRATEGIES FOR SYMMETRIC GAUSSIAN-ELIMINATION [J].
DAX, A .
MATHEMATICAL PROGRAMMING, 1982, 22 (03) :288-303
[8]   DEFINITE AND SEMIDEFINITE QUADRATIC FORMS [J].
Debreu, Gerard .
ECONOMETRICA, 1952, 20 (02) :295-300
[9]  
DEMBO RS, 1982, NONLINEAR OPTIMIZATI, P161
[10]  
DJANG D, 1979, THESIS STANFORD U ST