COMPUTATIONAL METHODS IN RISK THEORY - A MATRIX-ALGORITHMIC APPROACH

被引:33
作者
ASMUSSEN, S [1 ]
ROLSKI, T [1 ]
机构
[1] WROCLAW UNIV,INST MATH,PL-50370 WROCLAW,POLAND
关键词
RUIN PROBABILITY; PHASE-TYPE DISTRIBUTION; MATRIX-ALGORITHMIC METHODS; NONLINEAR MATRIX ITERATION; MARKOVIAN ENVIRONMENT; PERIODIC ENVIRONMENT;
D O I
10.1016/0167-6687(92)90058-J
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper is concerned with the numerical computation of the probability psi(u) of ruin with initial reserve u. The basic assumption states that the claim size distribution is phase-type in the sense of Neuts. The models considered are: the classical compound Poisson risk process, the Sparre Anderse process and varying environments which are either governed by a Markov process or exhibit periodic fluctuations. The computational steps involve the iterative solution of a non-linear matrix equation Q = psi(Q) as well as the evaluation of matrix-exponentials e(Qu). A number of worked-out numerical examples are presented.
引用
收藏
页码:259 / 274
页数:16
相关论文
共 51 条
[1]  
AFANASEVA LG, 1985, LECT NOTES MATH, V1155, P1
[2]  
ANDERSEN E, 1957, 15TH T INT C ACT NEW, V2, P219
[3]  
[Anonymous], 1988, NUMERICAL RECIPES AR
[4]   A MARKOV-CHAIN APPROACH TO PERIODIC QUEUES [J].
ASMUSSEN, S ;
THORISSON, H .
JOURNAL OF APPLIED PROBABILITY, 1987, 24 (01) :215-225
[5]  
ASMUSSEN S, 1992, UNPUB FUNDAMENTALS R
[6]  
ASMUSSEN S, 1990, 1991 S ANV STAT COP, P335
[7]  
ASMUSSEN S, 1991, UNPUB RISK THEORY PE
[8]  
ASMUSSEN S, 1992, IN PRESS ANN PROBABI, V20
[9]  
ASMUSSEN S, 1991, STOCH P APPL, V39
[10]  
ASMUSSEN S, 1984, SCAND ACTUAR J, P31