TOPOLOGICAL EXISTENCE AND STABILITY FOR STACKELBERG PROBLEMS

被引:48
作者
LIGNOLA, MB
MORGAN, J
机构
[1] Dipartimento di Matematica e Applicazioni, Università di Napoli, Napoli
[2] Dipartimento di Matematica e Applicazioni, Università di Napoli, Complesso di Monte San Angelo, Napoli
关键词
STACKELBERG PROBLEM; MULTIFUNCTIONS; GAMMA-LIMITS; EXISTENCE; STABILITY; E-SOLUTIONS; STRICT E-SOLUTIONS;
D O I
10.1007/BF02191740
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to study, in a topological framework, existence and stability for the solutions to a parametrized Stackelberg problem. To this end, approximate solutions are used, more precisely, epsilon-solutions and strict epsilon-solutions. The results given are of minimal character and the standard types of constraints are considered, that is, constant constraints, constraints defined by a finite number of inequalities, and more generally constraints defined by an arbitrary multifunction.
引用
收藏
页码:145 / 169
页数:25
相关论文
共 32 条
[1]  
Chen C., Cruz J.B., Stackelberg Solution for Two-Person Games with Biased Information Patterns, IEEE Transactions on Automatic Control, 17, pp. 791-797, (1972)
[2]  
Simaan M., Cruz J.B., On the Stackelberg Strategies in Nonzero Sum Games, Journal of Optimization Theory and Applications, 11, pp. 533-555, (1973)
[3]  
Basar T., Olsder G.J., Dynamic Noncooperative Game Theory, (1982)
[4]  
Lignola M.B., Morgan J., Topological Existence and Stability for MinSup Problems, Journal of Mathematical Analysis and Applications, 151, pp. 164-180, (1990)
[5]  
Loridan P., Morgan J., A Theoretical Approximation Scheme for Stackelberg Problems, Journal of Optimization Theory and Applications, 61, pp. 95-110, (1989)
[6]  
Loridan P., Morgan J., New Results on Approximate Solutions in Two-Level Optimization, Optimization, 20, pp. 819-836, (1989)
[7]  
Loridan P., Morgan J., ε- Regularized Two-Level Optimization Problems, pp. 99-113, (1989)
[8]  
Loridan P., Morgan J., On Strict ε- Solution for a Two-Level Optimization Problem, pp. 165-172, (1992)
[9]  
Dolecki S., Guillerme J., Lignola M.B., Malivert C., Methode des Γ- Inegalités, Comptes Rendus de l'Academie des Sciences de Paris, Serie I, 307, pp. 659-662, (1988)
[10]  
Molodtsov D.A., Fedorov V.V., Approximation of Two-Person Games with Information Exchange, USSR Computational Mathematics and Mathematical Physics, 13, pp. 123-142, (1973)