THE NUMERICAL COMPUTATION OF CONNECTING ORBITS IN DYNAMIC-SYSTEMS

被引:142
作者
BEYN, WJ
机构
[1] Fakultät für Mathematik, Universität Konstanz Universitätsstr, 10, D-7750 Konstanz, F.R.
关键词
D O I
10.1093/imanum/10.3.379
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Structural changes in dynamical systems are often related to the appearance or disappearance of orbits connecting two stationary points (either heteroclinic or homoclinic). Homoclinic orbits typically arise in one-parameter problems when on a branch of periodic solutions the periods tend to infinity (e.g. Guckenheimer & Holmes, 1983). We develop a direct numerical method for the computation of connecting orbits and their associated parameter values. We employ a general phase condition and truncate the boundary-value problem to a finite interval by using on both ends the technique of asymptotic boundary conditions; see, for example, de Hoog & Weiss (1980), Lentini & Keller (1980). The approximation error caused by this truncation is shown to decay exponentially. Based on this analysis and additional numerical investigations we set up an adaptive strategy for choosing the truncation interval. © 1990 Oxford University Press.
引用
收藏
页码:379 / 405
页数:27
相关论文
共 28 条
[1]  
Ascher U., 1988, NUMERICAL SOLUTION B
[2]  
BEYN WJ, 1987, BIFURCATION ANAL ALG
[3]   MINIMAL MODEL FOR MEMBRANE OSCILLATIONS IN THE PANCREATIC BETA-CELL [J].
CHAY, TR ;
KEIZER, J .
BIOPHYSICAL JOURNAL, 1983, 42 (02) :181-189
[4]  
COPPEL WA, 1978, SPRINGER LECTURE NOT, V629
[5]   AN APPROXIMATION-THEORY FOR BOUNDARY-VALUE-PROBLEMS ON INFINITE INTERVALS [J].
de Hoog, FR ;
WEISS, R .
COMPUTING, 1980, 24 (2-3) :227-239
[6]  
Doedel E., 1986, AUTO SOFTWARE CONTIN
[7]  
DOEDEL EJ, 1981, 10TH P MAN C NUM MAT, P265
[8]  
DOEDEL EJ, 1990, IN PRESS 7TH P INT C
[9]  
DOEDEL EJ, 1990, IN PRESS J COMP APPL
[10]  
FIFE PC, 1979, LECTURE NOTES BIOMAT, V28