PASSIVE FOURIER-TRANSFORM INFRARED-SPECTROSCOPY OF CHEMICAL PLUMES - AN ALGORITHM FOR QUANTITATIVE INTERPRETATION AND REAL-TIME BACKGROUND REMOVAL

被引:46
作者
POLAK, ML
HALL, JL
HERR, KC
机构
[1] Space and Environment Technology Center, The Aerospace Corporation, Los Angeles, CA, 90009-2957
来源
APPLIED OPTICS | 1995年 / 34卷 / 24期
关键词
REMOTE SENSING; FOURIER-TRANSFORM INFRARED SPECTROSCOPY;
D O I
10.1364/AO.34.005406
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a ratioing algorithm for quantitative analysis of the passive Fourier-transform infrared spectrum of a chemical plume. We show that the transmission of a near-field plume is given by tau(plume) = (L(obsd) - L(bb-plume))/(L(bkgd) - L(bb-plume)), where tau(plume) is the frequency-dependent transmission of the plume, L(obsd) is the spectral radiance of the scene that contains the plume, L(bkgd) is the spectral radiance of the same scene without the plume, and L(bb-plume) is the spectral radiance of a blackbody at the plume temperature. The algorithm simultaneously achieves background removal, elimination of the spectrometer internal signature, and quantification of the plume spectral transmission. It has applications to both real-time processing for plume visualization and quantitative measurements of plume column densities. The plume temperature (L(bb-plume)) which is not always precisely known, can have a profound effect on the quantitative interpretation of the algorithm and is discussed in detail. Finally, we provide an illustrative example of the use of the algorithm on a trichloroethylene and acetone plume.
引用
收藏
页码:5406 / 5412
页数:7
相关论文
共 15 条
[1]  
Wyatt C.L., Radiometric System Design, pp. 144-145, (1987)
[2]  
Haus R., Schafer K., Bautzer W., Heland J., Mosebach H., Bittner H., Eisenmann T., Mobile Fouriertransform infrared spectroscopy monitoring of air pollution, Appl. Opt, 33, pp. 5682-5689, (1994)
[3]  
Small G.W., Kroutil R.T., Ditillo J.T., Loerop W.R., Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms, Anal. Chem, 60, pp. 264-269, (1988)
[4]  
Carlson R.C., Hayden A.F., Telfair W.B., Remote observations of effluents from small building smokestacks using FTIR spectroscopy, Appl. Opt, 27, pp. 4952-4959, (1988)
[5]  
Herget W.F., Remote and cross-stack measurement of stack gas concentrations using a mobile FT-IR system, Appl. Opt, 21, pp. 635-641, (1982)
[6]  
Beer R., Remote Sensing by Fourier Transform Infrared Spectroscopy, (1992)
[7]  
Flanigan D.F., Detection of organic vapors with active and passive sensors: A comparison, Appl. Opt, 25, pp. 4253-4260, (1986)
[8]  
Kneizys F.X., Shettle E.P., Abreu L.W., Chetwynd J.H., Anderson G.P., Gallery W.O., Selby J.E.A., Clough S.A., Air Force Geophysics Laboratory report AFGL-TR-88-0177, (1988)
[9]  
Revercomb H.E., Buijs H., Howell H.B., LaPorte D.D., Smith W.L., Sromovsky L.A., Radiometric calibration of IR Fourier transform spectrometers: Solution to a problem with the High-Resolution Interferometer Sounder, Appl. Opt, 27, pp. 3210-3218, (1988)
[10]  
Weddigen C., Blom C.E., Hopfner M., Phase corrections for the emission sounder MIPAS-FT, Appl. Opt, 32, pp. 4586-4589, (1993)