EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICALITY

被引:37
作者
MASLOV, S [1 ]
ZHANG, YC [1 ]
机构
[1] BROOKHAVEN NATL LAB, DEPT PHYS, UPTON, NY 11973 USA
关键词
D O I
10.1103/PhysRevLett.75.1550
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce and solve an anisotropic model of self-organized criticality. The exponents are tau = 4/3, D = 3/2, nu = 2, d(f) = 1/2, z = 1, and theta = 1. This model is related to one-dimensional anisotropic interface depinning in a quenched random medium. Another anisotropic interface model, different from the first one in the realization of quenched disorder, is shown numerically to belong to the same universality class as the first one.
引用
收藏
页码:1550 / 1553
页数:4
相关论文
共 24 条
[1]  
Wilkinson D., Willemsen J.F., J. Phys. A, 16, (1983)
[2]  
Zaitsev S.I., Physica (Amsterdam), 189 A, (1992)
[3]  
Sneppen K., Phys. Rev. Lett., 69, (1992)
[4]  
Bak P., Sneppen K., Phys. Rev. Lett., 71, (1993)
[5]  
Paczuski M., Maslov S., Bak P.
[6]  
Paczuski M., Maslov S., Bak P., Field Theory for a Model of Self-Organized Criticality, Europhysics Letters (EPL), 28, (1994)
[7]  
Maslov S., Paczuski M., Bak P., Phys. Rev. Lett., 73, (1994)
[8]  
Maslov S., Phys. Rev. Lett., 74, (1995)
[9]  
Flyvbjerg H., Sneppen K., Bak P., Phys. Rev. Lett., 71, (1993)
[10]  
Ray T.S., Jan N., Phys. Rev. Lett., 72, (1994)