SUBSTRUCTURING PRECONDITIONERS FOR THE Q(1) MORTAR ELEMENT METHOD

被引:54
作者
ACHDOU, Y
KUZNETSOV, YA
PIRONNEAU, O
机构
[1] RUSSIAN ACAD SCI,INST NUMER MATH,MOSCOW 117334,RUSSIA
[2] UNIV PARIS 06,F-75252 PARIS,FRANCE
[3] INRIA,LE CHESNAY,FRANCE
关键词
D O I
10.1007/s002110050152
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Q(1) mortar element method is a non conforming finite element method with Q(1) elements based on domain decomposition. For the Laplace equation, it yields an ill conditioned linear system. For solving the linear system, the so called preconditioned conjugate gradient method in a subspace is used. Preconditioners are proposed, and estimates on condition numbers and arithmetical complexity are given, Finally, numerical experiments are presented.
引用
收藏
页码:419 / 449
页数:31
相关论文
共 19 条
[1]  
ACHDOU Y, 1992, CR ACAD SCI I-MATH, V315, P91
[2]  
ACHDOU Y, IN PRESS SIAM J NUME
[3]  
AGAPOV VK, 1988, SOV J NUMER ANAL MAT, V3, P245
[4]  
BENBELGACEM F, 1994, IN PRESS MORTAR FINI
[5]  
BERNARDI C, 1989, NONLINEAR PARTIAL DI
[6]   LINEAR FILTERING APPROACH TO COMPUTATION OF DISCRETE FOURIER TRANSFORM [J].
BLUESTEIN, LI .
IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1970, AU18 (04) :451-+
[7]  
Bourgat J.F., 1989, 2 INT S DOMAIN DECOM, P3
[8]   THE CONSTRUCTION OF PRECONDITIONERS FOR ELLIPTIC PROBLEMS BY SUBSTRUCTURING .3. [J].
BRAMBLE, JH ;
PASCIAK, JE ;
SCHATZ, AH .
MATHEMATICS OF COMPUTATION, 1988, 51 (184) :415-430
[9]  
GEORGE A, 1981, COMPUTER SOLUTION LA
[10]  
Girault V., 1986, FINITE ELEMENT METHO, V5