MULTIPLY MONOTONE-FUNCTIONS FOR CARDINAL INTERPOLATION

被引:12
作者
BUHMANN, MD [1 ]
MICCHELLI, CA [1 ]
机构
[1] IBM CORP,THOMAS J WATSON RES CTR,YORKTOWN HTS,NY 10598
关键词
D O I
10.1016/0196-8858(91)90018-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Among other things we derive sufficient conditions for a radial basis function φ: R≥ 0 → R that depend on derivatives of φ(√·): R0 → R being completely or multiply monotone, to admit interpolation on an infinite regular lattice if(x) = ∑ j∈Znf(j)x(x-j), x ∈ Rn, to f:Rn → R, where the cardinal function if(x) = ∑ j∈Zncjø(∥x - j∥), x ∈ Rn, satisfies χ(λ) = δ0l for all l ε{lunate} Zn. © 1991.
引用
收藏
页码:358 / 386
页数:29
相关论文
共 14 条
[1]  
[Anonymous], 1970, HDB MATH FNCTIONS
[2]  
BLEISTEIN N, 1986, INTEGRAL EXPANSION
[3]   MULTIVARIATE CARDINAL INTERPOLATION WITH RADIAL-BASIS FUNCTIONS [J].
BUHMANN, MD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) :225-255
[4]  
BUHMANN MD, 1990, ALGORITHMS FOR APPROXIMATION II, P146
[5]  
CHUI DK, 1988, MATH COMPUT, V51, P203
[6]  
DYN N, 1989, APPROXIMATION THEORY, V6, P211
[7]  
Dyn N., 1987, TOPICS MULTIVARIATE, P47, DOI DOI 10.1016/B978-0-12-174585-1.50009-9
[8]  
GASPER G, 1975, THOERY APPLICATION S
[9]  
JONES DS, 1982, THEORY GENERALISED
[10]   INTERPOLATION OF SCATTERED DATA - DISTANCE MATRICES AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS [J].
MICCHELLI, CA .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (01) :11-22