GRADIENT EXPANSION OF THE NONEQUILIBRIUM POTENTIAL FOR THE SUPERCRITICAL GINZBURG-LANDAU EQUATION

被引:21
作者
DESCALZI, O
GRAHAM, R
机构
[1] Fachbereich Physik, Universität Essen
关键词
D O I
10.1016/0375-9601(92)90777-J
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A gradient expansion is used to obtain a Lyapunov functional (the nonequilibrium potential) for the supercritical complex Ginzburg-Landau equation. The method simplifies the task of solving the Hamilton-Jacobi equation associated with the steady-state distribution of the stochastic Ginzburg-Landau equation with weak noise and it confirms and extends results obtained previously by a more tedious calculation. The method opens the possibility for studying other situations not yet explored.
引用
收藏
页码:84 / 90
页数:7
相关论文
共 19 条
[1]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[2]   NONLINEAR PROPERTIES OF THERMAL-CONVECTION [J].
BUSSE, FH .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (12) :1929-&
[3]  
COULLET P, 1985, J PHYS LETT-PARIS, V46, P787
[4]  
Eckhaus W., 1965, STUDIES NONLINEAR ST
[5]   POTENTIAL FOR THE COMPLEX GINZBURG-LANDAU EQUATION [J].
GRAHAM, R ;
TEL, T .
EUROPHYSICS LETTERS, 1990, 13 (08) :715-720
[6]   STEADY-STATE ENSEMBLE FOR THE COMPLEX GINZBURG-LANDAU EQUATION WITH WEAK NOISE [J].
GRAHAM, R ;
TEL, T .
PHYSICAL REVIEW A, 1990, 42 (08) :4661-4677
[7]  
GRAHAM R, 1991, INSTABILITIES NONEQU, V3
[8]  
GRAHAM R, 1989, NOISE NONLINEAR DYNA, V1
[9]  
Haken H., 1983, SYNERGETICS INTRO
[10]   PERSISTENT PROPAGATION OF CONCENTRATION WAVES IN DISSIPATIVE MEDIA FAR FROM THERMAL EQUILIBRIUM [J].
KURAMOTO, Y ;
TSUZUKI, T .
PROGRESS OF THEORETICAL PHYSICS, 1976, 55 (02) :356-369