NUMERICAL ESTIMATION OF THE PATH INTEGRAL, AND THE DIFFUSION IN AN ANHARMONIC-OSCILLATOR

被引:6
作者
MORITA, T
HARA, H
机构
来源
PHYSICA A | 1984年 / 127卷 / 1-2期
关键词
D O I
10.1016/0378-4371(84)90122-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:113 / 124
页数:12
相关论文
共 25 条
[1]   DIFFUSION IN A BISTABLE POTENTIAL - THE FUNCTIONAL INTEGRAL APPROACH [J].
CAROLI, B ;
CAROLI, C ;
ROULET, B .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (01) :83-111
[2]  
COLEMAN S, 1975, 9TH INT SCH SUBN PHY
[3]   FUNCTIONAL INTEGRAL FOR GENERALIZED WIENER PROCESSES AND NONEQUILIBRIUM PHENOMENA [J].
DEKKER, H .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 85 (03) :598-606
[4]   TIME-LOCAL GAUSSIAN PROCESSES, PATH INTEGRALS AND NONEQUILIBRIUM NONLINEAR DIFFUSION [J].
DEKKER, H .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 85 (02) :363-373
[5]   FEYNMAN PROOF OF EXACT RELATION BETWEEN A CLASS OF PATH SUMS AND GENERAL NONLINEAR FOKKER-PLANCK EQUATION [J].
DEKKER, H .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 84 (01) :205-211
[6]  
Feynman R.P., 1965, QUANTUM MECH PATH IN
[7]   FORMAL SOLUTION OF FOKKER-PLANCK EQUATION IN OPERATOR APPROACH [J].
GOTO, T .
PROGRESS OF THEORETICAL PHYSICS, 1978, 60 (05) :1298-1303
[8]   MOST-PROBABLE PATHS OF GENERALIZED RANDOM-WALKS [J].
HARA, H ;
OBATA, T .
PHYSICAL REVIEW B, 1983, 28 (08) :4403-4412
[9]   PATH-INTEGRALS FOR FOKKER-PLANCK EQUATION DESCRIBED BY GENERALIZED RANDOM-WALKS [J].
HARA, H .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 45 (02) :159-166
[10]  
Kubo R., 1973, J STAT PHYS, V9, P51, DOI DOI 10.1007/BF01016797