THE CHAPERONIN FROM THE ARCHAEON SULFOLOBUS-SOLFATARICUS PROMOTES CORRECT REFOLDING AND PREVENTS THERMAL-DENATURATION IN-VITRO

被引:81
作者
GUAGLIARDI, A [1 ]
CERCHIA, L [1 ]
BARTOLUCCI, S [1 ]
ROSSI, M [1 ]
机构
[1] CNR,INST BIOCHIM ORGAN & BIOL,I-80125 NAPLES,ITALY
关键词
ARCHAEA; CHAPERONIN; PROTEIN AGGREGATION; PROTEIN FOLDING;
D O I
10.1002/pro.5560030910
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.
引用
收藏
页码:1436 / 1443
页数:8
相关论文
共 42 条
[1]   THERMOSTABLE NAD+-DEPENDENT ALCOHOL-DEHYDROGENASE FROM SULFOLOBUS-SOLFATARICUS - GENE AND PROTEIN-SEQUENCE DETERMINATION AND RELATIONSHIP TO OTHER ALCOHOL DEHYDROGENASES [J].
AMMENDOLA, S ;
RAIA, CA ;
CARUSO, C ;
CAMARDELLA, L ;
DAURIA, S ;
DEROSA, M ;
ROSSI, M .
BIOCHEMISTRY, 1992, 31 (49) :12514-12523
[2]   BINDING OF A CHAPERONIN TO THE FOLDING INTERMEDIATES OF LACTATE-DEHYDROGENASE [J].
BADCOE, IG ;
SMITH, CJ ;
WOOD, S ;
HALSALL, DJ ;
HOLBROOK, JJ ;
LUND, P ;
CLARKE, AR .
BIOCHEMISTRY, 1991, 30 (38) :9195-9200
[3]  
BANEYX F, 1992, J BIOL CHEM, V267, P11637
[4]  
BARTOLUCCI S, 1987, J BIOL CHEM, V262, P7725
[5]  
BOCHKAREVA ES, 1992, J BIOL CHEM, V267, P6796
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]  
BRUNSCHIER R, 1993, J BIOL CHEM, V268, P2767
[8]   GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION [J].
BUCHNER, J ;
SCHMIDT, M ;
FUCHS, M ;
JAENICKE, R ;
RUDOLPH, R ;
SCHMID, FX ;
KIEFHABER, T .
BIOCHEMISTRY, 1991, 30 (06) :1586-1591
[9]   GLUTAMATE-DEHYDROGENASE FROM THE THERMOACIDOPHILIC ARCHAEBACTERIUM SULFOLOBUS-SOLFATARICUS [J].
CONSALVI, V ;
CHIARALUCE, R ;
POLITI, L ;
GAMBACORTA, A ;
DEROSA, M ;
SCANDURRA, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 196 (02) :459-467
[10]   PROTEIN FOLDING - CYTOSOLIC CHAPERONIN CONFIRMED [J].
ELLIS, J .
NATURE, 1992, 358 (6383) :191-192