MODE-STABILITY OF THE KERR BLACK-HOLE

被引:217
作者
WHITING, BF
机构
关键词
D O I
10.1063/1.528308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1301 / 1305
页数:5
相关论文
共 26 条
[1]   RADIATION FIELDS IN SCHWARZSCHILD BACKGROUND [J].
BARDEEN, JM ;
PRESS, WH .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (01) :7-19
[2]   MAXIMAL ANALYTIC EXTENSION OF KERR METRIC [J].
BOYER, RH ;
LINDQUIST, RW .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) :265-+
[3]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[4]  
Carter B., 1973, BLACK HOLES
[5]   EQUATIONS GOVERNING GRAVITATIONAL PERTURBATIONS OF KERR BLACK-HOLE [J].
CHANDRASEKHAR, S ;
DETWEILER, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1976, 350 (1661) :165-174
[6]   EQUATIONS GOVERNING PERTURBATIONS OF SCHWARZSCHILD BLACK-HOLE [J].
CHANDRASEKHAR, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 343 (1634) :289-298
[7]   CLASSICAL AND QUANTUM SCATTERING-THEORY FOR LINEAR SCALAR FIELDS ON THE SCHWARZSCHILD METRIC .1. [J].
DIMOCK, J ;
KAY, BS .
ANNALS OF PHYSICS, 1987, 175 (02) :366-426
[8]   BLACK-HOLES HAVE NO SUPERHAIR [J].
GUVEN, R .
PHYSICAL REVIEW D, 1980, 22 (10) :2327-2330
[9]  
INCE EL, 1956, ORDINARY DIFFERENTIA, pCH8
[10]   LINEAR-STABILITY OF SCHWARZSCHILD UNDER PERTURBATIONS WHICH ARE NONVANISHING ON THE BIFURCATION 2-SPHERE [J].
KAY, BS ;
WALD, RM .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) :893-898