PSEUDOSPECTRAL METHOD FOR THE GOOD BOUSSINESQ EQUATION

被引:57
作者
DEFRUTOS, J
ORTEGA, T
SANZSERNA, JM
机构
关键词
D O I
10.2307/2938665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the nonlinear stability and convergence of a fully discrete, pseudospectral scheme for the "good" Boussinesq equation u(tt) = -u(xxxx) + u(xx) + (u2)xx. Numerical comparisons with finite difference schemes are also reported.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 16 条
[1]  
Canuto C., 2012, SPECTRAL METHODS EVO
[2]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[3]  
David G., 1977, NUMERICAL ANAL SPECT
[4]   SPLIT-STEP SPECTRAL SCHEMES FOR NONLINEAR DIRAC SYSTEMS [J].
DEFRUTOS, J ;
SANZSERNA, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 83 (02) :407-423
[5]  
DEFRUTOS J, 1988, COMPUTATIONAL MATH, V3
[6]   FOURIER METHOD FOR INTEGRATION OF HYPERBOLIC EQUATIONS [J].
FORNBERG, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (04) :509-528
[7]   STABILITY AND CONVERGENCE IN NUMERICAL-ANALYSIS .3. LINEAR INVESTIGATION OF NONLINEAR STABILITY [J].
LOPEZMARCOS, JC ;
SANZSERNA, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :71-84
[8]  
LOPEZMARCOS JC, 1988, NUMERICAL TREATMENT, P216
[9]   NUMERICAL-SOLUTIONS OF THE GOOD BOUSSINESQ EQUATION [J].
MANORANJAN, VS ;
MITCHELL, AR ;
MORRIS, JL .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (04) :946-957
[10]   SOLITON AND ANTISOLITON INTERACTIONS IN THE GOOD BOUSSINESQ EQUATION [J].
MANORANJAN, VS ;
ORTEGA, T ;
SANZSERNA, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (09) :1964-1968